Какие системы объединили возможности современных компьютеров знания и опыт специалистов
Компьютерные технологии обучения в педагогике появились с появлением промышленных компьютеров в образовательных учреждениях. Первой обучающей системой на основе мощной ЭВМ фирмы Control Data Corporation была система Plato, разработанная в США в конце 1950-х гг., которая развивалась в течение 20 лет. Массовым создание и использование обучающих программ стало с начала 1980-х гг. с появлением и широким распространением персональных компьютеров. С тех пор применение ЭВМ для математических расчетов было оттеснено на второй план, а основным их применением стали образовательные функции и обработка текстов и графики.
С появлением примеров программ компьютерного обучения к их созданию приступило огромное количество педагогов, в основном специалистов по техническим наукам. В разрабатываемых программах реализовывался практический опыт преподавания конкретных дисциплин с помощью персональных компьютеров. В силу того, что педагоги-теоретики долгое время не принимали участие в разработке принципов этого нового направления в обучении, до сих пор нет общепризнанной психолого- педагогической теории компьютерного обучения. Таким образом, компьютерные обучающие программы создаются и применяются без необходимого учета принципов и закономерностей обучения.
Возможности компьютерных обучающих систем
Современный персональный компьютер может находить применение в обучении практически всем обучающим дисциплинам.
Возможности персонального компьютера в обучающей деятельности состоят в:
- интерактивном (диалоговом) режиме работы;
- «персональности» (небольшие размеры и доступная стоимость, которые позволяют обеспечить компьютерами учебный класс);
- высоких графических и иллюстративных возможностей;
- простоте управления;
- легкость регистрации и хранения информации о процессе обучения учащегося;
- возможность копирования и размножения обучающих программ.
При использовании персонального компьютера в качестве обучающего средства, его технические возможности:
- активизируют учебный процесс;
- индивидуализируют обучение;
- смещают акценты от теоретических знаний к практическим;
- повышают наглядность в предъявлении материала;
- повышают интерес учеников к обучению.
Диалоговый характер работы компьютера и его персональность позволяет активизировать обучение. При традиционном классном обучении на уроке активно работает 20–30% учащихся. При обучении в компьютерном классе работа с компьютерной обучающей программой стимулирует учеников к деятельности и позволяет контролировать ее результаты.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимостьПри организации компьютерного обучения каждый ученик может выбирать подходящий для него темп обучения. Для более глубокого и тонкого учета индивидуальных особенностей учащихся разработаны компьютерные программы, с помощью которых ведется обучение – педагогические программные средства (ППС):
Между легким и сложным уровнем обучающая программа может учитывать более тонкое деление подготовленности учащихся.
Компьютерные обучающие системы (КОС) – это специально разработанные программные модули, которые применяются в образовательном процессе и предназначены для управления познавательной деятельностью обучаемого, формирования и совершенствования его профессиональных знаний, умений и навыков.
Виды компьютерных обучающих систем
Существуют следующие виды КОС:
Интерактивная обучающая система – это компьютерная программа, которая предназначена для обучения и проверки знаний обучаемого в диалоговом режиме с применением современных средств компьютерного дизайна и технологии мультимедиа.
Интерактивная обучающая система может работать в нескольких режимах:
- Обучение – предоставляет учебно-теоретический материал, оснащенный рисунками, схемами и видеофрагментами. В конце каждого раздела размещаются контрольные вопросы.
- Экзамен – режим проверки усвоения полученного материала, формирование оценки;
- Помощь – сведения об обучающей системе;
- Лектор – формирование преподавателем демонстрационного блока из рисунков, фотографий, видеофрагментов, которые входят в обучающую систему;
- Статистика – вывод информации об успеваемости обучаемого при работе с обучающей системой.
Тренажер-имитатор – компьютерная обучающая программа, которая моделирует технологические ситуации при работе технологического оборудования и которые требуют управляющих воздействий персонала.
Тренажеры-имитаторы также могут работать в нескольких режимах:
- Навыки работы – предназначен для обучения управлением имитируемым технологическим оборудованием. Сначала все действия выполняются Мастером, а затем предполагается их самостоятельное повторение.
- Обучение – происходит управление технологическим оборудованием с целью приведения технологических параметров к нужному значению.
- Экзамен – для выполнения тех же технологических задач, что и в режиме Обучение, но без помощи Мастера и с ограничением по времени.
- Помощь – сведения о работе с тренажером-имитатором.
- максимально приближены к реальной обстановке при использовании графического 3D-моделирования технологических объектов и полномасштабного математического моделирования всех физико-химических процессов;
- дают возможность задавать и корректировать управляющие действия, контролировать все параметры по показаниям приборов на экранах дисплеев на технологической установке в лаборатории;
- предоставляют возможность выполнять учебно-тренировочную задачу с помощью Мастера, подсказывающего следующее действие;
- выполнение анализа действий ученика с выведением оценки каждого действия и протокола решения учебно-тренировочной задачи.
Обучающие-контролирующие системы и автоматизированные системы контроля знаний.
Интерактивная обучающая система и тренажер-имитатор обладают максимальной информативностью, которая позволяет достичь наибольшей эффективности преподавания материала. С их помощью можно организовывать обучение и осуществлять контроль за результатом использования.
Компьютерные обучающие системы стали обязательным компонентом учебного процесса, в связи с чем возникает все больше вопросов по их использованию. Особенно это касается краткосрочного обучения. Дистанционное обучение с помощью сетей Интранет и Интернет предоставляет учащимся использовать обучающие системы самостоятельно, при этом промежуточный и итоговый контроль за усвоением материала может проводится в традиционном очном режиме непосредственно на аудиторных занятиях с преподавателем.
Преимуществом использования компьютерных обучающих систем в учебном процессе является предоставление возможности оперативной переработки их содержимого, что соответствует высокому темпу технического прогресса и модернизации оборудования.
Под экспертной системой (ЭС) понимается система, объединяющая возможности компьютера со знаниями и опытом эксперта в такой форме, что система может предложить разумный совет или осуществить разумное решение поставленной задачи. Желаемой характеристикой такой системы, является способность системы пояснять ход своих рассуждений в понятной для спрашивающего форме.
Обобщенная структура ЭС представлена на рис.3.3. В целом процесс её функционирования можно представить следующим образом: пользователь, желающий получить необходимую информацию, через пользовательский интерфейс посылает запрос к ЭС; решатель, пользуясь базой знаний, генерирует и выдает пользователю подходящую рекомендацию, объясняя ход своих рассуждений при помощи подсистемы объяснений. Реальные ЭС могут иметь более сложную структуру.
Рис. 5. Обобщенная структура экспертной системы
Пользователь — специалист предметной области, для которого предназначена система. Обычно его квалификация недостаточно высока, и поэтому он нуждается в помощи и поддержке своей деятельности со стороны ЭС.
Инженер по знаниям — специалист в области искусственного интеллекта, выступающий в роли промежуточного буфера между экспертом и базой знаний.
База знаний (БЗ) — ядро ЭС, совокупность знаний предметной области.
Решатель (дедуктивная машина, блок логического вывода) — программа, моделирующая ход рассуждений эксперта на основании знаний, имеющихся в БЗ.
Подсистема объяснений — программа, позволяющая пользователю получить ответы на вопросы: «Как была получена та или иная рекомендация?» и «Почему система приняла такое решение?»
Интеллектуальный редактор БЗ — программа, представляющая инженеру по знаниям возможность создавать БЗ в диалоговом режиме.
Основная классификация ЭС — по типу решаемых задач:
1. Интерпретация данных — процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Например, SIAP (определение типов океанских судов по результатам аэрокосмического сканирования), МИКРОЛЮШЕР (определение свойств личности по результатам психодиагностического тестирования).
2. Диагностика — процесс соотнесения объекта с некоторым классом объектов и/или обнаружение неисправности (отклонения от нормы) в некоторой системе. Например, система ANGY (диагностика и терапия сужения коронарных сосудов), система CRIB (диагностика ошибок в аппаратуре и математическом обеспечении ЭВМ) и др.
3. Мониторинг — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы таких ЭС — «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учета временного контекста. Среди существующих разработок: СПРИНТ (контроль над работой электростанций), REACTOR (помощь диспетчерам атомного реактора), FALCON (контроль аварийных датчиков на химическом заводе) и др.
4. Проектирование — подготовка спецификаций на создание объектов с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов — чертеж, пояснительная записка и т. д.
5. Прогнозирование — позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В такой системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками. Примеры ЭС: WILLARD (предсказание погоды), PLANT (оценка будущего урожая), ECON (прогнозы в экономике) и др.
6. Планирование — нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности. Например, STRIPS (планирование поведения робота), ISIS (планирование промышленных заказов), MOLGEN (планирование эксперимента) и др.
7. Обучение — использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагностировать слабости в познаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.
8. Управление — функция организованной системы, поддерживающая определенный режим деятельности. Такого рода ЭС осуществляют управление поведением сложных систем в соответствии с заданными спецификациями.
Подвигло меня к написанию этого материала публикация «История языков программирования: как Fortran позволил пользователям общаться с ЭВМ на «ты».
И тут я вспомнил, что почти 30 лет назад я вел рубрику «ИНЖЕНЕР И КОМПЬЮТЕР» в журнале «Техника и наука». Первой публикацией в этой рубрике была статья в №7 журнала с названием «Операционные системы: зачем они инженеру». И этой статье говорится о том, что именно операционные системы позволяют перейти на «ты» с ЭВМ. Но одно другому не противоречит. Перечитав статью, я понял, что за 30 лет она не потеряла своей актуальности, но при этом позволяет взглянуть, что же происходило 30 лет назад в нашей стране в области информатизации, когда еще не было Linux, но был UNIX/ЮНИКС и уже был MS/DOS, и оправдались ли надежды. Мне кажется, что страна опять наступает на грабли: тогда это было ЕС ЭВМ от IBM, а сегодня MS Windows от Microsoft. Что еще примечательно? Иллюстрировал эту серию мой коллега Блажнов В.Ю. Ниже предлагается материал этой статьи без купюр вместе с иллюстрациями.
Все, что может быть запрограммировано, должна делать машина; люди должны делать лишь то, на что они пока не в состояние написать программы.
Г.Р. Громов, (Национальные информационные ресурсы: проблемы промышленной эксплуатации. М., Наука, 1985, с. 166).
СЕГОДНЯ мы открываем рубрику «Инженер и компьютер». Первая, вводная, статья — о системе ЮНИКС. У читателя могут возникнуть вопросы: почему операционные системы, а не устройство современных ЭВМ, почему операционные устройства, а не языки программирования? И наконец, почему система ЮНИКС, а не любая другая! Попытаемся ответить.
С 1949 года, когда заработала первая электронно-вычислительная машина с запоминаемой программой, и до наших дней ЭВМ сделали поистине грандиозный скачок.
На первые ЭВМ, так же как и на первый самолет братьев Райт, люди смотрели как на чудо. А сегодня говорят о наступлении «компьютерной эры», звучат серьезные предупреждения о том, что если специалист не будет обучаться компьютерной грамотности, то он отстанет от жизни, не получит продвижения по службе. Становится привычным, что на рабочем столе инженера мы видим либо дисплей, подключенный к большой ЭВМ, либо персональную ЭВМ (ПЭВМ), которые служат то пишущей машинкой, то суперкалькулятором, то информационно-справочной системой, то кульманом, то средством управления экспериментальной установкой. В такой промышленно развитой стране, как США, один терминал сегодня приходится на 10 работающих, для пользователей ЭВМ фирмы ИБМ это число составляет 6, а в самой фирме ИБМ один терминал имеют в среднем два сотрудника.
С появлением на рынке ПЭВМ насыщенность ЭВМ становится еще более высокой. В ведущих фирмах США на одного научно-технического сотрудника приходится уже 1,5 дисплея или ПЭВМ. Руководители фирм считают дисплей на столе инженера необходимым предметом оргтехники, так же нужным, как телефон.
В нашей стране эти цифры пока не столь впечатляющи, однако подготовка к этапу широкомасштабного внедрения ЭВМ во все сферы жизни должна вестись уже сейчас: в школах, высших и средних специальных учебных заведениях, на производстве, на курсах повышении квалификации. За годы двенадцатой пятилетки выпуск средств вычислительной техники в нашей стране увеличится в 2,3 раза, только в вузах будет создано около 130 тыс. рабочих мест, оборудованных ПЭВМ и дисплеями.
Какими же знаниями о вычислительной технике должен обладать современный инженер? Здесь уместно сравнение ЭВМ с автомобилем. Легковые автомобили покупают миллионы людей, и большинство из них порой имеют самые общие сведения о машине, только те, которые нужны при покупке: максимальная скорость, мощность двигателя, вместимость салона, расход горючего и т. п.
Так же обстоит дело и с ЭВМ. Организация, приобретающая ЭВМ, или человек, приобретающий персональный компьютер, прежде всего интересуются быстродействием центрального процессора, объемом оперативной и внешней памяти, количеством подключаемых дисплеев и т.п. Инженера, работающего в конструкторском бюро или на производстве, мало заботит, как устроена ЭВМ, какие микросхемы входят в ее состав, как работают центральный процессор или каналы ввода-вывода. Для него главное, чтобы он на ней смог решить свои задачи.
Продолжим аналогию между автомобилем и ЭВМ. Для того чтобы человек смог ездить на автомобиле, он должен изучить правила вождения и правила дорожного движения. Не зная правил вождения, вы не тронетесь с места, а езда без знания и соблюдения правил дорожного движения может привести к аварии.
Аналогичные правила должен знать и любой человек, начинающий работу с ЭВМ. ЭВМ — это сложная техническая система, состоящая из ряда функциональных элементов — логических, запоминающих, индикационных и других. ЭВМ не могут осуществить связь и обмен информацией с дисплеем и другими внешними устройствами, ввести и выполнить необходимые программы.
Вычислительным машинам, так же как и автомобилю, кроме «мотора» (центрального процессора), требуется «рулевое управление», которое обеспечило бы согласованное функционирование их узлов и дало возможность использовать их человеку. Такое «рулевое управление» для ЭВМ — операционные системы (ОС) — одно из самых выдающихся достижений в области вычислительной техники, которое позволило по-новому взглянуть на возможности и сферу применения вычислительных машин. Операционные системы сегодня неотделимы от ЭВМ, они являются ее естественным продолжением, и порой бывает трудно определить, где кончается машина и где начинается операционная система.
Операционные системы разрабатываются системными программистами и представляют собой организованную совокупность программ, реализующих сложные алгоритмы управления функционированием ЭВМ. Эти программы, по сути дела, скрывают от пользователя всю сложность вычислительных машин. Для работы с машиной достаточно знать возможности ОС, предоставляемые пользователю в виде некоторого языка взаимодействия с ней. Сразу оговоримся, что языки взаимодействия с ОС и языки программирования не имеют между собой ничто общего. Язык взаимодействия с операционной системой — это просто набор команд.
Пользователь, набирая их на клавиатуре дисплея, может заставить машину делать то, что ему необходимо: выполнить некоторую программу, подготовить и распечатать документ, обменяться корреспонденцией с другими пользователями, просмотреть информацию а банке данных, провести арифметические расчеты и, наконец, ввести, оттранслировать и отладить программу, написанную на одном из языков программирования высокого уровня, включенных в состав ОС.
Перечень этих команд операционной системы и составляет «правила вождения» вычислительной машины, а правила и особенности их применения — «правила дорожного движения» в системе. Без знаний первых вы не сможете работать с ЭВМ, а несоблюдение вторых может привести к „аварии“, например, уничтожению очень нужной вам программы. Сразу оговоримся, что целью нашего семинара не является изучение того, как устроена ОС, это является прерогативой системных программистов. В рамках серии последующих публикаций мы будем вести речь о том, какие возможности предоставляет операционная система пользователю и как их применять на практике.
Но почему все же операционная система, а не просто языки программирования высокого уровня? Здесь несколько причин. Сегодня, спустя почти 40 лет после начала эксплуатации ЭВМ, когда во всех вузах, а теперь и в школах, дают основы информатики и вычислительной техники и в первую очередь учат программированию хотя бы на одном из языков высокого уровня, когда в стране действует широкая сеть курсов по обучению искусству программирования, когда массовыми тиражами и различными издательствами выпускается литература по программированию, когда чуть ли не в каждом издаваемом журнале введена рубрика, в рамках которой ведется обучение программированию, когда принята национальная программа по обеспечению всеобщей компьютерной грамотности, трудно представить себе инженера, который не знал хотя бы одного языка программирования высокого уровня или не имел бы дома соответствующей литературы (хотя бы у детей или внуков).
С другой стороны, инженер, освоивший программирование, но не знающий операционной системы, подобен человеку, заблудившемуся темной ночью только из-за того, что, взяв с собой фонарик, он забыл выяснить, как же его включать. Не зная языка взаимодействия с ОС, инженер, даже написав программу, не будет представлять, что с ней делать: как ввести ее в память машины, в каком виде, как обеспечить ее сохранность, как выполнить ее и т. д.
И третья, пожалуй, самая важная причина. Современные операционные системы резко отличаются от систем, ориентированных на перфокарты, которые работали на ЭВМ 15, 10 и даже 5 лет тому назад. Современные ОС — это прежде всего диалоговые системы, рассчитанные на взаимодействие пользователя с машиной посредством дисплея. В современные системы включены различные программные средства общего назначения (так называемые утилиты), которыми можно пользоваться вообще без программирования. Освоив их и осознав все преимущества применения ЭВМ, человек гораздо легче переходит к программированию.
К таким средствам ОС можно отнести редакторы текстов, с помощью которых легко и просто готовить, корректировать и размножать различные документы; электронную почту, посредством которой вы можете обмениваться информацией с другими пользователями; так называемые файловые системы и системы управления базами данных, на основе которых вы сможете построить информационно-поисковые системы, и ряд других. Даже не умея программировать, вы можете использовать в своей работе готовые программы. Но и здесь не обойтись без знания ОС: как ввести программу в память машины, как ее выполнить, где и как подготовить для нее исходные данные, где и как сохранить результаты счета, — все это «рычаги управления» современной вычислительной машины.
И наконец, почему система ЮНИКС? До последнего времени для каждого типа ЭВМ разрабатывались собственные операционные системы: ОС РВ для СМ ЭВМ, ДОС ЕС и ОС ЕС для ЕС ЭВМ, MS/DOS и СР/М для ПЭВМ, — имеющие различные языки взаимодействия, запросы на выполнение системных функций, директивы ввода-вывода, то есть у разных вычислительных машин были свои «рычаги управления». Если учесть, что смена поколений ЭВМ происходит каждые 5—7 лет, что инженеру приходится обращаться за помощью как к большой, так и к персональной ЭВМ, что у инженера может быть накоплена большая библиотека программ (например, имитационного моделирования), которую он хотел бы использовать на любой ЭВМ и сохранять при переходе на новую машину, то понятно, какой ужас его охватывает при виде такого многообразия машин, и самое главное — операционных систем. Часто даже в том случае, когда несколько ОС предназначены для машин одного и того же типа, они имеют существенные различия в языке взаимодействия пользователя с системой.
Все это приводило (да и сейчас часто приводит) к тому, что даже профессиональному программисту при переходе с одной системы на другую требуется серьезная переподготовка. Еще большие накладные расходы связаны с переносом пользовательских программ, без которых уже невозможна нормальная работа инженера, в новую ОС.
Рано или поздно стандартизация должна коснуться и операционных систем (как это уже было с языком программирования и вычислительными сетями), и в первую очередь языка взаимодействия с системой.
Должна была появиться мобильная операционная система, функционирующая на всех типах ЭВМ — больших и персональных — и имеющая унифицированный язык взаимодействия. Такой ОС в настоящее время стала система ЮНИКС, которая с начала 8О-х годов уверенно выходит по числу приложений на уровень «стандарта-де-факто» мировой индустрии ЭВМ в целом. В Японии, например, система ЮНИКС рассматривается как основной претендент а качестве стандартной операционной системы для ЭВМ пятого поколения.
Совместимые с системой ЮНИКС операционные системы созданы или создаются и в нашей стране. Это инструментальная мобильная операционная система ИНМОС для СМ ЭВМ, мобильная операционная система МОС для ЕС ЭВМ, диалоговая мобильная единая операционная система ДЕМОС для СМ ЭВМ, ЕС ЭВМ и ПЭВМ. В двенадцатой пятилетке мобильные операционные системы типа ЮНИКС будут реализованы для всех типов и классов отечественных ЭВМ.
Таким образом, созданы предпосылки для того, чтобы пользователь, освоив унифицированное «рулевое управление», а точнее, язык взаимодействия с системой ЮНИКС, мог успешно работать на различных ЭВМ, безболезненно переходя от одной машины к другой.
Однако объяснять феномен системы ЮНИКС только необходимостью стандартизации было бы не совсем верным. Как правило, операционные системы создаются большими коллективами профессиональных программистов, которые далеки от проблем рядовых пользователей ЭВМ, поэтому их в первую очередь заботит, как бы «выжать» максимум возможностей из ЭВМ, а в последнюю — нужны ли эти возможности пользователю и как он эти возможности будет применять.
Удачным исключением из этого правила стала операционная система ЮНИКС, которая с самого начала в отличии от других систем проектировалась с учетом потребностей рядового пользователя. Не последнюю роль в простоте и обозримости системы ЮНИКС сыграло то, что в ее разработке, по сути дела участвовало два человека. Учет накопленного опыта, а также ряд новых и плодотворных идей позволили авторам создать принципиально новую ОС, которая в полной мере отвечает принципу «все гениальное просто». Она стала антиподом операционной системы OS/360 (читай ОС ЕС), которая для многих системных программистов, не говоря уже о рядовых пользователях, осталось «вещью в себе» из-за эклектичности и громоздкости. Несмотря на то что ОС ЮНИКС, как и любая другая ОС, является сложной программной системой, ее часто называют «системой для домохозяек» — настолько прост язык взаимодействия с ней.
ОСНОВНОЙ режим работы системы ЮНИКС — диалог. В отличие от традиционных систем (типа ОС ЕС) в системе ЮНИКС вы не найдете языка управления заданиями, который создавал дополнительные трудности для инженера на его тернистом пути к освоению ЭВМ.
Для использования ОС ЮНИКС в повседневной работе вам не обязательно владеть каким-либо языком программирования, система располагает широким спектром программ общего назначения (утилитами), которые могут оказать вам существенную помощь. Освоив «рулевое управление» системы, вы получите в ее лице хорошего помощника, который даст возможность разрабатывать, редактировать и размножать различные документы; станет вашим электронным секретарем, ничто не забывающим и вовремя напоминающим о текущих делах; поможет в проведении инженерных расчетов и создании банка данных. Имеющиеся средства ОС ЮНИКС позволят вам обмениваться корреспонденцией с другими пользователями и проводить телеконференции. Для того чтобы начать, работу с системой, достаточно освоить 5—10 простых команд.
Однако в эпоху научно-технической революции инженеру не обойтись и без программирования. Те программы, которые сегодня используются при проектировании новых машин, линий метрополитена, жилых кварталов, управляют технологическим процессом, завтра могут оказаться безнадежно устаревшими: появились более точные методы расчета, новые материалы, изменились требования в градостроении или условия прокладки метро, ученые создали новую технологию. Что делать инженеру в этих условиях? Бежать к программисту, у которого своих дел хватает, долго объяснять ему суть проблемы и в итоге получить программу, которая делает совсем не то, что требуется инженеру? И все это притом, что на столе инженера стоит «умная» ПЭВМ, которая поможет ему написать и отладить программу.
СЕГОДНЯ проходит то время, когда программирование было прерогативой профессионалов, когда инженера отделяла от ЭВМ спина программиста. И здесь можно провести аналогию с автомобилем. Представьте себе ситуацию, когда каждый владелец автомобиля нанимает себе профессионального водителя. Вы скажете: «Абсурд!».
А не абсурд, имея под рукой ЭВМ, зная четко постановку задачи, обращаться к человеку, далекому от вашей проблематики? Система ЮНИКС и здесь окажет неоценимую услугу инженеру. Она включает в свой состав системы программирования на языках Си, Фортран и Паскаль и располагает простыми и удобными средствами подготовки и отладки программ.
Мы надеемся, что курс по изучению ОС ЮНИКС поможет вам углубить знания в области вычислительной техники и успешно применять их на практике. В рамках курса мы будем ориентироваться на отечественную мобильную операционную систему МО С ЕС.
В цикле публикаций планируется рассмотреть вопросы, связанные с организацией взаимодействия пользователя с системой, подготовкой документов, созданием информационно-справочным систем, электронной почтой, программированием на языках Фортран, Паскаль и Си. Предполагается также рассмотреть вопрос переноса ранее разработанных вами программ на языках Фортран и Паскаль для ОС ЕС в систему ЮНИКС для дальнейшего их использования.
В. ОРЛОВ, кандидат технических наук, старший научный сотрудник
Вот и все. Так что же принципиально изменилось в нашем миреза эти 30 лет!
Какой вид эффективности характеризует процесс достижения целей функционирования и развития организации?
Выберите один ответ.
a. правовая
b. организационная
c. экологическая
Какое решение считается в организации более предпочтительным?
Выберите один ответ.
a. анализ
b. решение
c. проблема
Лица, наделенные правом инициировать ре¬шения или их реализовать – это:
Выберите один ответ.
a. эксперты
b. субъекты решения
c. объекты решения
Первую попытку сформулировать основные понятия, связанные со стратегическими играми предпринял - …
Выберите один ответ.
a. Дж. фон Нейман
b. Б. Паскаль
c. Э. Борель
В каких решениях необходимо учитывать фактор неопределенности?
Выберите один ответ.
a. социальных и экономических
b. статических и динамических
c. многоальтернативных, инновационных
Процессы разработки и реализации управленческих решений в любой системе содержат:
Выберите один ответ.
a. непрогнозируемые издержки
b. гарантированный результат
c. риск
Какие системы объединили возможности современных компьютеров, знания и опыт специалистов, экспертов?
Выберите один ответ.
a. математические системы
b. системы поддержки принятия решений
c. экспертные системы
Существенным недостатком коллективного решения является:
Выберите один ответ.
a. нечеткость границ ответственности
b. избыточный контроль
c. затягивание сроков реализации
Творческая парадигма выдвигает на первый план …
Выберите один ответ.
a. логику
b. синтез
c. анализ
История развития любой отрасли науки интересна и поучительна. Развитие новых технологий всегда следовало за новыми открытиями в других подчас смежных областях развития человеческой мысли и потребностей общества. Технологии обучения всегда строились на новых теориях психологии обучения. Вторая половина двадцатого века ознаменовалась такими открытиями, которые оказали очень сильное влияние на развитие всех сторон жизни общества. Это в первую очередь относится к появлению персонального компьютера и современных средств коммуникации.
Компьютерные технологии, появившиеся в середине ХХ века дали мощный толчок развитию образовательных технологий на основе информационных и коммуникационных технологий. Период становления и развития компьютерных технологий обучения не столь велик, первые работы по описанию применения компьютера в обучении появились в конце 50-х годов. Период жизни - 50-60 лет для любого явления небольшой, но если учесть революционную значимость компьютера для всех областей деятельности человека, приведшую к появлению и развитию информационного общества, то можно утверждать, что феномен компьютерные технологии требует рассмотрения вопросов применения компьютера и компьютерных технологий в образовательной деятельности, а не только в учебном процессе.
Выделим несколько периодов развития компьютерных технологий обучения, начиная с 1954 года, когда и появилась работа «Наука об учении и искусство обучения».
Автоматизированные компьютерные технологии обучения . Название технологии обучения устаревшее, но положившее начало дальнейшему активному применению компьютера в обучении. Период времени достаточно насыщен поиском разнообразных подходов, алгоритмов обучения и разработками компьютерных программ обучения и контроля. Появление персональных ЭВМ - компьютеров, значительно повлияло на становление и развитие компьютерных технологий обучения.
Компьютерные мультимедийные технологии обучения . С расширением функциональных возможностей компьютера, позволивших применять различные среды для подготовки информационного, а в дальнейшем и обучающего материала, появился новый термин - мультимедийные технологии обучения.
Сетевые компьютерные технологии обучения . Особенностью развития настоящего периода образования являются развитые средства доставки информации, возможность работы в интерактивном режиме, комплексное использование различных взаимодополняющих технологий обучения. На данном этапе развития мирового сообщества большое внимание во всех сферах его жизнедеятельности уделяется сетевым технологиям общения и обучения. Развитие сетевых или иначе коммуникационных технологий общения дали новый толчок к развитию технологий дистанционного компьютерного обучения, Интернет-технологий. Появилось новое понятие - Интернет образование.
Следует отметить, что в основе выделенных технологий обучения лежит компьютер, его непрерывно развивающиеся функциональные возможности по представлению и передаче информации на большие расстояния.
Рассмотрим кратко виды технологий обучения на базе компьютера и современных средств коммуникации.
Вторая половина двадцатого века ознаменовалась такими открытиями, которые оказали очень сильное влияние на развитие всех сторон жизни общества.
Охарактеризуем период первых попыток внедрения компьютера в обучение и становление компьютерных технологий обучения (1950-1970 годы). В этот период компьютерные технологии обучения называли автоматизированными технологиями обучения или технологиями программированного обучения, что не одно и тоже. Внедрение ЭВМ в учебный процесс (слово компьютер не было еще введено в лексикон) не повысило на раннем этапе внедрения эффективности обучения, да и трудно было ожидать каких-то серьезных результатов от первых внедрений ЭВМ в учебный процесс. Сам парк ЭВМ, архитектура последних требовала особого обслуживания, а работа обучающихся в пакетном режиме обработки информации позволяла применить ЭВМ лишь в качестве тренажеров, не выходящих за рамки информационно-контролирующих устройств. Причем и такая возможность применения ЭВМ в качестве средства обучения была доступна только в отдельных элитных вузах страны.
В 50-е годы ХХ века начала развиваться такая образовательная технология, как программированное обучение. Возможности ее по сравнению со ставшей традиционной поурочной технологией оказались выше. Программированный контроль, осуществляемый с помощью специальных средств (технических и нетехнических) и пособий, пошаговое освоение информации вызвали повышенный интерес педагогов и обучаемых. Однако вторжение программированного обучения в учебный процесс сразу вызвало серьезнейшие изменения в традиционной образовательной системе. Программированный урок, как, впрочем, впоследствии и проблемный, потерял все отличительные признаки урока; изменились все представления об организации учебновоспитательного процесса; на повестку дня встал вопрос об отказе от традиционной образовательной системы или ее трансформации в другую. Позднее такой вопрос вставал всякий раз, когда появлялась новая образовательная технология, будь то проблемное, развивающее, дифференцированное обучение и прочие новые технологии.
Второй период (71-80-е годы). Появились более совершенные машины, средства отображения информации в виде дисплеев. При разработке педагогических программных средств утвердилась ориентация на рефлексивные процессы в управлении учебно-познавательной деятельностью. Появление персональных компьютеров позволило начать разработки и апробации различных способов управления познавательной деятельностью обучающегося.
Этот этап компьютеризации образования также не внес каких-либо значительных изменений в организацию учебного процесса. Основное направление использования компьютера в этот период - применение последнего для математических вычислений, освобождение от рутинной обработки результатов исследования, создание автоматизированных систем обработки и поиска информации в ограниченном массиве данных. Обращение к ЭВМ как средству обучения с учетом ограниченных функциональных, а значит и дидактических возможностей ЭВМ пока находится на начальном этапе своего развития.
Однако именно в этот период проводится достаточно много теоретических исследований по теории управления познавательной деятельностью, появляются специализированные школы при НИИ и Академии наук. Интерес к ЭВМ все возрастает, но лишь немногие вузы и еще меньше школ имеют компьютерную технику.
Третий период (81-90-е годы) ознаменован изменением архитектуры и расширением парка машин. Изменяется способ общения пользователя с ЭВМ, которая действительно становится персональной машиной - компьютером. Дидактические возможности компьютерной техники этого времени становятся достаточно разнообразными, рассматриваются возможности более эффективного использования всей полноты функций компьютерных обучающих систем как посредников становления интерактивных способов управления, в том числе, и познавательной деятельностью.
В теоретических исследованиях и практических разработках компьютерных технологий обучения рассматривается и применяется личностнодеятельностный подход в организации обучения с помощью компьютера, повышается возможность индивидуализации обучения в условиях применения компьютерной техники и его программного обеспечения, утверждается приоритет активности самой обучающейся личности при организации процесса обучения. В конце 80-х годов достаточно активно разрабатываются алгоритмы управления учебным процессом и создаются десятки тысяч программ различного назначения. Разработчиками этих программ были специалисты вычислительных центров и технических вузов, поскольку только у них была компьютерная техника.
В настоящее время трудно оспаривать значимость первых шагов применения компьютеров в обучении, поскольку именно компьютеры и гибкие алгоритмы, используемые при разработке практически всех педагогических программных средств, в настоящее время являются мощным сопровождением и поддержкой учебного процесса и технологий самообразования.
Под средствами мультимедиа обычно понимают комплекс аппаратных и программных средств, позволяющих пользователю общаться с компьютером, используя самые разные для него среды: графику, гипертексты, звук, анимацию, видео.
Системы мультимедиа рассматриваются как новый вид технических средств обучения, интегрирующий разные виды информации - звуковую, визуальную, и обеспечивающий интерактивное взаимодействие с обучаемым. Интересные возможности мультимедиа технологий используются при создании электронных учебных пособий и других материалов обучающего характера. Активное применение мультимедиа технологии открывает перспективное направление развития современных компьютерных технологий обучения.
Мультимедиа технологии - способ подготовки электронных документов, включающих визуальные, аудиоэффекты и мультипрограммирование различных ситуаций под единым управлением интерактивного программного обеспечения.
Мультимедиа технологии - совокупность технологий (приемов, методов, способов), позволяющих с использованием технических и программных средств мультимедиа продуцировать, обрабатывать, хранить, передавать информацию, представленную в различных форматах (текст, звук, графика, видео, анимация) с использованием интерактивного программного обеспечения.
Анализ существующих мультимедиа продуктов позволяет выделить следующие их возможности:
использование базы данных аудиовизуальной информации с возможностью выбора кадра из банка аудиовизуальных программ и продвижения «внутрь» выбранного кадра;
выбор необходимой пользователю линии развития сюжета;
наложение, перемещение аудиовизуальной информации, представленной в различной форме;
аудиосопровождение визуальной информации;
ситуационный монтаж текстовой, графической, видео, диаграммной, мультипликационной информации;
изменение формы представленной визуальной информации по различным параметрам;
реализация анимационных эффектов;
изображение визуальной информации в цвете;
вычленение выбранной части визуальной информации для ее последующего детального рассмотрения;
работа с аудиовизуальной информацией одновременно в нескольких окнах;
создание учебных видеофильмов;
интерактивный диалог обучающегося с программой.
Принципиальны отличия мультимедиа от традиционных средств представления аудио- и визуальной информации, например, видеозаписи. Конечно, видеомагнитофон позволяет реализовать синхронную подачу звука и изображения, но в видеозапись заложен жесткий сценарий, что в принципе исключает интерактивность, произвольный переход от одного места записи к другому, осуществление поиска разделов по содержанию, использование разветвленных сюжетов, другое.
Мультимедиа программное средство - программный продукт (программное средство), в котором объединены различные виды информации - текст, звук, графика, видео, анимация.
Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д. Мультимедиа технологии широко используются в рекламном бизнесе, при разработке компьютерных игр. Богатые дидактические возможности мультимедийных технологий используются при создании электронных учебных пособий и других материалов обучающего характера, т.е. - компьютерных средств обучения.
Мультимедийные технологии полностью укладываются в концепцию развития компьютерных технологий обучения. Следует подчеркнуть, что мультимедийные технологии имеют те же теоретические основы, что и компьютерные технологии обучения. Правильнее рассматривать мультимедийные технологии обучения как современный этап развития компьютерных технологий обучения, использующих дидактические возможности современного компьютера, новые технологии программирования и инструментальные среды для разработки компьютерных средств обучения.
В нашей стране наиболее активные изменения в области внедрения информационных технологий в образование начались в 1990-х годах внедрением в систему образования глобальной сети Интернет. Появилось новое понятие - Интернет-образование - сетевые компьютерные технологии обучения.
Технологии сетевого компьютерного обучения позволяют принципиально изменить отношение к получению образования, необходимости непрерывного повышения своего культурно-образовательного уровня на протяжении всей своей жизни. В последнее время все чаще компьютерные сетевые технологии обучения называют Интернет-технологиями обучения или E-leaming.
Возможности интернет - технологий в образовании:
развитие межкультурных и интеркультурных связей
развитие информационного мирового сообщества
развитие системы дистанционного и открытого образования
ведение международной учебно – проектной деятельности
проведение конференций, олимпиад, конкурсов и других мероприятий в сфере образования
организация педагогических сообществ по направлениям подготовки
повышение культурно – образовательного уровня населения
непрерывное повышение квалификации специалистов
Развитие процессов информатизации образования, как и всех сфер жизни общества, показало стремление ученых, педагогов, других специалистов использовать новые средства усиления интеллектуальной деятельности человека, в то же время компьютеризация сформировала новые высокие требования к внутренним механизмам ответственности самого обучающегося за активизацию своей познавательной деятельности.
Внедрение более мощных и совершенных компьютеров и компьютерных сетей способствует развитию предпосылок необходимости интенсивного развития и внедрения инновационных процессов в образование, поиска современных технологий обучения, основанных на самообразовании и проектировании собственной траектории обучения. Развитие сетевых технологий взаимодействия дали толчок к развитию новых технологий обучения - компьютерных дистанционных технологий обучения.
Барышкин А. Г., Шубина Т. В., Резник Н. А. Компьютерные презентации на уроке математики
Башмаков А. И., Башмаков И. А. Разработка компьютерных учебников и обучающих систем. М.:2003
Галеев И.Х. О систематизации учебных компьютерных средств
Мархель И.И. Компьютерная технология обучения.// Педагогика. – 1990.
Машбиц Е. И. Психолого-педагогические проблемы компьютеризации обучения. М.: 1988
Пак Н. И. Нелинейные технологии обучения в условиях информатизации / - Красноярск, РИО КГПУ, 2004.
Сосновский В. И. Технические и аудиовизуальные средства обучения: принцип системности и практика. Новосибирск: 2004.
Тыщенко О.Б. Новое средство компьютерного обучения - электронный учебник // Компьютеры в учебном процессе, 1999
Христочевский С.А . Электронные мультимедийные учебники и энциклопедии. // Информатика и образование, 2000, №2, стр. 70–77
Энтина С. Б. Об одном довольно простом и полезном использовании ИКТ на уроке математики.
Читайте также: