Какие преимущества дает разделение в компьютере целых и вещественных дробных чисел
Существуют величины, которые по своей природе могут принимать только целые значения, например, счетчики повторений каких-то действий, количество людей и предметов, координаты пикселей на экране и т.п. (возможно, вы видели известный мультфильм «В стране невыученных уроков», где полтора землекопа искали породившего их двоечника). Кроме того, как показано в главе 2, кодирование нечисловых видов данных (текста, изображений, звука) сводится именно к целым числам.
Чтобы сразу исключить все возможные проблемы, связанные с неточностью представления в памяти вещественных чисел, целочисленные данные кодируются в компьютерах особым образом.
Целые и вещественные числа в компьютере хранятся и обрабатываются по-разному.
Операции с целыми числами, как правило, выполняются значительно быстрее, чем с вещественными. Не случайно в ядре современных процессоров реализованы только целочисленные арифметические действия, а для вещественной арифметики используется специализированный встроенный блок – математический сопроцессор.
Кроме того, использование целых типов данных позволяет экономить компьютерную память. Например, целые числа в интервале от 0 до 255 в языке Паскаль можно хранить в переменных типа byte, которые занимают всего один байт в памяти. В то же время самое «короткое» вещественное число (типа single) требует четыре байта памяти.
Наконец, только для целых чисел определены операции деления нацело и нахождения остатка. В некоторых задачах они удобнее, чем простое деление с получением дробного (к тому же не совсем точного) результата: например, без них не обойтись при вычислении наибольшего общего делителя двух чисел.
Таким образом, для всех величин, которые не могут иметь дробных значений, нужно использовать целочисленные типы данных.
Дискретность представления чисел
Из главы 2 вы знаете, что существует непрерывное и дискретное представление информации. Их принципиальное различие состоит в том, что дискретная величина может принимать конечное количество различных значений в заданном интервале, а непрерывная имеет бесконечно много возможных значений. Для нашего обсуждения важно, что
целые числа дискретны:
вещественные (действительные, дробные) числа непрерывны;
современный компьютер работает только с дискретными данными.
Таким образом, для хранения вещественных чисел в памяти компьютере нужно выполнить дискретизацию – записать непрерывную величину в дискретной форме. При этом может происходить искажение данных, поэтому большинство трудностей в компьютерной арифметике (антипереполнение, приближенность представления дробной части и др.) связано именно с кодированием дробных чисел.
Программное повышение точности вычислений
Использование этих и других программных методов позволяет увеличить разрядность обрабатываемых чисел по сравнению с аппаратной разрядностью компьютера. Однако ограничение разрядности (и связанный с ним эффект переполнения) все равно остаётся: в программу заложено конкретное число разрядов, да и объём памяти компьютера конечен.
Чем отличается компьютерная арифметика от «обычной»? Почему?
Почему диапазон чисел в компьютере ограничен? Связано ли это с двоичностью компьютерной арифметики?
Что такое переполнение разрядной сетки?
Какие проблемы появляются при ограниченном числе разрядов в дробной части?
Что называется антипереполнением? Что, по-вашему, опаснее для вычислений – переполнение или антипереполнение?
*Может ли антипереполнение сделать невозможными дальнейшие вычисления?
Сколько бит информации несет знаковый разряд?
Приведите примеры величин, которые по своему смыслу могут иметь только целые значения.
Какие преимущества дает разделение в компьютере целых и вещественных (дробных) чисел?
Какая математическая операция между двумя целыми числами может дать в результате нецелое число?
Чем отличается деление для целых и вещественных чисел?
Вспомните определение дискретных и непрерывных величин. Какие множества чисел в математике дискретны, а какие – нет? Ответ обоснуйте.
Объясните, почему ограниченность разрядов дробной части приводит к нарушению свойства непрерывности.
Хранение в памяти целых чисел
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
На уроках математики вы никогда не обсуждали, как хранятся числа. Математика — это теоретическая наука, для которой совершенно не важно, записаны они на маленьком или большом листе бумаги, зафиксированы с помощью счётных палочек, счётов, или внутри полупроводниковой схемы. Поэтому число в математике может состоять из любого количества цифр, которое требуется в решаемой задаче.
В то же время инженеры, разрабатывающие компьютер, должны спроектировать реальное устройство из вполне определённого количества деталей. Поэтому число разрядов, отведённых для хранения каждого числа, ограничено, и точность вычислений тоже ограничена. Из-за этого при компьютерных расчётах могут возникать достаточно серьёзные проблемы. Например, сумма двух положительных чисел может получиться отрицательной, а выражение А + В может совпадать с А при ненулевом В. В этой главе мы рассмотрим важные особенности компьютерной арифметики, которые нужно учитывать при обработке данных. В первую очередь, они связаны с тем, как размещаются целые и вещественные числа в памяти компьютера.
Предельные значения чисел
Как вы уже поняли, числа, хранящиеся в компьютере, не могут быть сколь угодно большими и имеют некоторые предельные
значения. Представим себе некоторое вычислительное устройство,
которое работает с четырехразрядными неотрицательными целыми десятичными числами (рис. 4.1). Для
вывода чисел используется четырёх разрядный индикатор, на котором можно
отобразить числа от 0 (все разряды числа
минимальны) до 9999 (все разряды максимальны) — рис. 4.2.
Вывести на такой индикатор число 10 000 невозможно: не хватает технического устройства для пятого разряда. Такая «аварийная» ситуация называется переполнением разрядной сетки или просто переполнением (англ. overflow — переполнение «сверху»).
Переполнение разрядной сетки— это ситуация, когда число, которое требуется сохранить, не умещается в имеющемся количестве разрядов вычислительного устройства.
В нашем примере переполнение возникает при значениях, больших 9999 = 10 4 - 1, где 4 — это количество разрядов. В общем случае, если в системе счисления с основанием В для записи числа используется К разрядов, максимальное допустимое число Сmax вычисляется по аналогичной формуле 1
Сmax=В К -1.
Именно эта формула для В = 2 неоднократно применялась в главе 2.
Подчеркнем, что переполнение никак не связано с системой счисления: оно вызвано ограниченным количеством разрядов устройства и не зависит от количества возможных значений в каждом из этих разрядов.
Рассмотрим теперь, что получится, если наше устройство будет работать не только с целыми, но и с дробными числами. Пусть, например, один из четырёх разрядов относится к целой части числа, а остальные три — к дробной (рис. 4.3). Конечно, эффект переполнения сохранится и здесь: максимально допустимое число равно 9,999.
1Докажите эту формулу самостоятельно, например, подсчитав количество всех возможных комбинаций значений цифр в К разрядах.
Кроме того , дробная часть числа тоже ограничена, поэтому любое число, имеющее более трёх цифр после запятой, не может быть представлено точно: младшие цифры придётся отбрасывать (или округлять).
Не все вещественные числа могут быть представлены в компьютере точно.
При ограниченном числе разрядов
дробной части существует некоторое минимальное ненулевое значение Cmin, которое можно записать на данном индикаторе (в нашем примере это 0,001,
рис. 4.4). В общем случае, если число записано в системе счисления с основанием В и для хранения дробной части числа используется F разрядов, имеем
Cmin = B - F .
Любое значение, меньшее чем Cmin, неотличимо от нуля. Такой эффект принято называть анти переполнением (англ. underflow — переполнение «снизу»).
Кроме того, два дробных числа, отличающиеся менее чем на Cmin , для компьютера неразличимы. Например, 1,3212 и 1,3214 на нашем индикаторе выглядят совершенно одинаково (рис. 4.5).
Дополнительная погрешность появляется при переводе дробных чисел из десятичной системы
счисления в двоичную. При этом даже некоторые «круглые» числа (например, 0,2) в памяти компьютера представлены неточно, потому что в двоичной системе они записываются как бесконечные дроби и их приходится округлять до заданного числа разрядов.
Так как вещественные числа хранятся в памяти приближённо, сравнивать их (особенно если они являются результатами сложных расчётов) необходимо с большой осторожностью. Пусть при вычислениях на компьютере получили X=10 -6 и У = 10 6 . Дробное значение X будет неточным, и произведение X * У может незначительно отличаться от 1. Поэтому при сравнении вещественных чисел в компьютере условие «равно» использовать не рекомендуется. В таких случаях числа считаются равными, если
их разность достаточно мала по модулю. В данном примере нужно проверять условие |1-X-Y|<е, где е — малая величина, которая задаёт нужную точность вычислений. К счастью, для большинства практических задач достаточно взять е порядка 10 -2 . 10 -4 , а ошибка компьютерных расчётов обычно значительно меньше 1 (не более 10 -7 ).
Введение разряда для знака числа не меняет сделанных выше выводов, только вместо нулевого минимального значения появляется отрицательное, которое зависит от разрядности (оно равно -9999 в первом из обсуждаемых примеров).
Различие между вещественными и целыми числами
Существуют величины, которые по своей природе могут принимать только целые значения, например счётчики повторений каких-то действий, количество людей или предметов, координаты пикселей на экране и т. п. Кроме того, как показано в главе 2, кодирование нечисловых видов данных (текста, изображений, звука) сводится именно к целым числам.
Чтобы сразу исключить все возможные проблемы, связанные с неточностью представления в памяти вещественных чисел, целочисленные данные кодируются в компьютерах особым образом.
Целые и вещественные числа в компьютере хранятся и обрабатываются по - разному.
Операции с целыми числами, как правило, выполняются значительно быстрее, чем с вещественными. Не случайно в ядре современных процессоров реализованы только целочисленные арифметические действия, а для вещественной арифметики используется специализированный встроенный блок — математический сопроцессор.
Кроме того, использование целых типов данных позволяет экономить компьютерную память. Например, целые числа в интервале от 0 до 255 в языке Паскаль можно хранить в перемен -
1 Тем не менее встречаются ситуации, когда вычислительные трудности все же возникают: классический пример — разность близких по значению десятичных дробей, отличающихся в последних значащих цифрах.
ных типа byte, которые занимают всего один байт в памяти. В то же время самое «короткое» вещественное число (типа single) требует четырёх байтов памяти.
Наконец, только для целых чисел определены операции деления нацело и нахождения остатка. В некоторых задачах они удобнее, чем простое деление с получением дробного (к тому же не совсем точного) результата: например, без них не обойтись при вычислении суммы цифр какого-то числа.
Таким образом, для всех величин, которые не могут иметь дробных значений, нужно использовать целочисленные типы данных.
Дискретность представления чисел
Из § 7 вы знаете, что существует непрерывное и дискретное представление информации. Их принципиальное различие состоит в том, что дискретная величина может принимать конечное количество различных значений в заданном интервале, а непрерывная имеет бесконечно много возможных значений. Для нашего обсуждения важно, что:
*целые числа дискретны;
*вещественные( действительные, дробные) числа непрерывны;
*современный компьютер работает только с дискретными данными.
Вопросы и задания
1. Чем отличается компьютерная арифметика от «обычной»? Почему?
2. Почему диапазон чисел в компьютере ограничен? Связано ли это
с двоичностью компьютерной арифметики?
3. Что такое переполнение разрядной сетки?
4. Какие проблемы появляются при ограниченном числе разрядов
в дробной части?
*6.. Может ли антипереполнение сделать невозможными дальнейшие вычисления?
7. Сколько битов информации несет знаковый разряд?
8.Приведите примеры величин , которые по своему смыслу могут иметь только целые значения.
9.Какая математическая операция между двумя целыми числами может дать в результате нецелое число?
10.Чем различается деление для целых и вещественных чисел?
11.Какие преимущества дает разделение в компьютере целых и вещественных (дробных) чисел?
12.Вспомните определение дискретных и непрерывных величин. Какие множества чисел в математике дискретны, а какие – нет? Ответ обоснуйте.
13.Объясните, почему ограниченность разрядов дробной части приводит к нарушению свойства непрерывности.
1 Такие задачи часто даются на школьных олимпиадах по информатике; для них даже придумано специальное название : «длинная» арифметика.
14. Можно ли организовать вычисления с разрядностью, превышающей аппаратную разрядность компьютера? Попробуйте предложить способы решения этой задачи.
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
Информатика. 10 класса. Босова Л.Л. Оглавление
§13. Представление чисел в компьютере
Самым первым видом данных, с которыми начали работать компьютеры, были числа. ЭВМ первого поколения могли производить только математические расчёты (вычисления).
Из курса информатики основной школы вы помните, что компьютеры работают с целыми и вещественными числами. Их представление в памяти осуществляется разными способами.
13.1. Представление целых чисел
Во многих задачах, решаемых на компьютере, обрабатываются целочисленные данные. Прежде всего, это задачи экономического характера, при решении которых данными служат количества акций, сотрудников, деталей, транспортных средств и др. Целые числа используются для обозначения даты и времени, для нумерации различных объектов: элементов массивов, записей в базах данных, машинных адресов и т. д. По своей природе множество целых чисел дискретно, т. к. состоит из отдельных элементов.
И хотя любое целое число можно рассматривать как вещественное, но с нулевой дробной частью, предусмотрены специальные способы представления целых чисел. Это обеспечивает: эффективное расходование памяти, повышение быстродействия, повышение точности вычислений за счёт введения операции деления нацело с остатком.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда.
Беззнаковое представление можно использовать только для неотрицательных целых чисел.
Для получения компьютерного представления беззнакового целого числа в n-разрядной ячейке памяти достаточно перевести его в двоичную систему счисления и, при необходимости, дополнить полученный результат слева нулями до n-разрядов.
Например, десятичные числа 130 и 39 в восьмиразрядном представлении будут иметь вид:
Понятно, что существуют ограничения на числа, которые могут быть записаны в n-разрядную ячейку памяти. Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2 n -1. Минимальное число соответствует n нулям, хранящимся в n разрядах памяти, и равно нулю. Далее приведены диапазоны значений для беззнаковых целых n-разрядных чисел:
При знаковом представлении целых чисел старший разряд ячейки отводится под знак (0 — для положительных, 1 — для отрицательных чисел), а остальные разряды — под цифры числа.
Представление числа в привычной для человека форме «знак-величина», при которой старший разряд ячейки отводится под знак, а остальные разряды — под цифры числа, называется прямым кодом.
Например, прямые коды чисел 48 и -52 для восьмиразрядной ячейки равны:
В математике множество целых чисел бесконечно.
Компьютер работает с ограниченным множеством целых чисел.
Прямой код положительного числа отличается от прямого кода равного по абсолютной величине отрицательного числа только содержимым знакового разряда.
В прямом коде числа можно хранить, но выполнение арифметических операций над числами в прямом коде затруднено — оно требует более сложной архитектуры центрального процессора, «умеющего» выполнять не только сложение, но и вычитание, а также «знающего» особый алгоритм обработки не имеющего «веса» знакового разряда. Этих трудностей позволяет избежать использование дополнительного кода.
Чтобы понять сущность дополнительного кода, рассмотрим работу реверсивного счётчика, последовательность показаний которого можно представить в виде замкнутого кольца из чисел (рис. 3.5).
Рис. 3.5. Реверсивный счётчик
При возрастании показаний счётчика до максимального, например до 999, следующими его состояниями должны быть 1000, 1001, 1002 и т. д. Но для изображения старшей единицы в счётчике не хватает разряда, происходит переполнение разрядной сетки. Поэтому мы увидим 000, 001, 002 и т. д.
При убывании показаний счётчика после состояния 000 будут идти 999, 998, 997 и т. д. Но после достижения нуля последовательное вычитание единицы должно давать -1, -2, -3 и т. д.
Будем рассматривать числа 999, 998, 997 как коды чисел -1, -2, -3 и проверим на их примере соотношение: у + (-у) = 0:
1 + 999 = 1000;
2 + 998 = 1000;
3 + 997 = 1000.
С учётом того что единица переполнения теряется, мы, сложив число и код противоположного ему числа, получаем ноль!
Вот ещё несколько примеров:
5-2 = 5 + [-2] = 5 + 998 = 1003;
7-5 = 7 + [-5] = 7 + 995 = 1002.
Для устранения неоднозначности в кольце будем считать половину состояний (0-499) кодами нуля и положительных чисел, а оставшуюся половину (500-999) — кодами отрицательных чисел.
Таким образом, дополнительный код положительного числа совпадает с этим числом, а для отрицательного числа он равен дополнению его величины до числа q n , возникающего при переполнении разрядной сетки. Здесь q — основание системы счисления, n — число разрядов в разрядной сетке.
Рассмотрим алгоритм получения дополнительного n-разрядного кода отрицательного числа:
1) модуль числа представить прямым кодом в n двоичных разрядах;
2) значения всех разрядов инвертировать (все нули заменить единицами, а единицы — нулями);
3) к полученному представлению, рассматриваемому как n-разрядное неотрицательное двоичное число, прибавить единицу.
Пример 1. Найдём 16-разрядный дополнительный код отрицательного числа -201710.
Использование дополнительного кода позволяет свести операцию вычитания чисел к операции поразрядного сложения кодов этих чисел.
Выполним эту операцию в 16-разрядных машинных кодах.
Нам потребуются прямой код числа 48 и дополнительный код числа -2017.
Рассмотрим полученный результат. Это отрицательное число (об этом говорит 1 в знаковом разряде), представленное в дополнительном коде. Перейдём к прямому коду модуля соответствующего числа, по которому сможем восстановить десятичное представление результата.
Прямой код можно получить из дополнительного кода, если применить к нему операцию инвертирования и прибавить единицу.
Получаем: -111101100012 = -1969.
13.2. Представление вещественных чисел
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
Попробуйте обосновать это утверждение.
Вещественные числа записываются в естественной или в экспоненциальной форме.
В жизни мы чаще пользуемся естественной формой записи чисел, при которой: число представляется последовательностью десятичных цифр со знаком плюс или минус, знак плюс может опускаться, для разделения целой и дробной частей числа используется запятая.
Например: 12,34; 0,0056; -708,9.
В экспоненциальной форме вещественное число а представляется как а = ± m • q p , где m — мантисса числа, q — основание системы счисления, р — порядок числа.
Например, длину некоторого отрезка, равного 47,8 см, можно записать так:
1) 478 • 10 -1 см;
2) 47,8 • 10 0 см;
3) 4,78 • 10 1 см;
4) 0,478 • 10 2 см;
5) 0,000478 • 10 5 см.
Такое многообразие вариантов записи в экспоненциальной форме одного и того же числа не всегда удобно. Для однозначного представления вещественных чисел в компьютере используется нормализованная форма.
Нормализованная запись отличного от нуля вещественного числа 1) — это запись вида а = ± m • q p , где р — целое число (положительное, отрицательное или ноль), m — дробь, целая часть которой содержит одну значащую (ненулевую) цифру, т. е. 1 ≤ m < q.
1) Стандарт IEEE 754.
Примеры нормализации чисел:
1) 31,415926 = 3,1415926 • 10 1 ;
2) 1000 = 1,0 • 10 3 ;
3) 0,123456789 = 1,23456789 • 10 -1 ;
4) 0,00001078 = 1,078 • 108 -5 ;
5) 1000,00012 = 1,00000012 • 102 11 ;
6) AB,CDEF16 = A,BCDEF16 • 1016 1 .
Диапазон вещественных чисел в памяти компьютера очень широк, но, тем не менее, ограничен. Множество вещественных чисел, которые могут быть представлены в компьютере, конечно.
Поясним это на примере калькулятора, который производит вычисления в десятичной системе счисления. Пусть это будет калькулятор с десятью знакоместами на дисплее:
• 6 знакомест отводится под мантиссу (одно знакоместо отводится под знак мантиссы, четыре — под цифры мантиссы, одно — под точку, разделяющую целую и дробную части мантиссы);
• одно знакоместо отводится под символ «Е»;
• три знакоместа отводятся под порядок (одно — под знак порядка, два — под цифры порядка).
У калькуляторов первая значащая цифра, с которой и начинается мантисса, изображается перед точкой.
Число 12,34 в таком калькуляторе будет представлено как +1.234Е+01.
Число 12,35 будет представлено как + 1.235Е+01.
Как известно, между числами 12,34 и 12,35 находится бесконечное множество вещественных чисел, например: 12,341; 12,3412; 12,34123 и т. д.
Каждое из этих чисел в нашем калькуляторе будет представлено как + 1.234Е+01. Для последних разрядов у нас просто не хватает знакомест! Аналогичная ситуация имеет место и в компьютерном представлении вещественных чисел, независимо от того, ячейки какой разрядности там использованы.
Получается, что точно мы можем представить в компьютере лишь некоторую конечную часть множества вещественных чисел, а остальные числа — лишь приближённо.
Таким образом, множество вещественных чисел, представляемых в компьютере, дискретно, конечно и ограничено.
САМОЕ ГЛАВНОЕ
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
Для компьютерного представления вещественных чисел используется нормализованная запись вещественного числа а = ± m • q p , где q — основание системы счисления, р — целое число (положительное, отрицательное или ноль), m — дробь, целая часть которой содержит одну значащую (ненулевую) цифру, т. е. 1 ≤ m < q.
Компьютерное представление вещественных чисел дискретно, конечно и ограничено.
Вопросы и задания
*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде: 1) 00000100; 2) 11111001.
8. Для хранения целого числа со знаком в компьютере используется два байта. Сколько единиц содержит внутреннее представление числа -101, записанного:
1) в прямом коде;
2) в дополнительном коде?
9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:
Как вы можете объяснить полученные результаты?
10. Запишите десятичные числа в нормализованной форме:
1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.
11. Сравните следующие числа:
1) 318,4785 • 10 9 и 3,184785 • 10 11 ;
2) 218,4785 • 10 -3 и 1847,85 • 10 -4 .
12. Выполните операцию сложения:
1) 0,397621 • 10 3 + 0,2379 • 10 1 ;
2) 0,251452 • 10 -3 + 0,125111 • 10 -2 .
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
Любому, кто хоть раз задумывался в жизни о том, чтобы стать "айтишником" или системным администратором, да и просто связать судьбу с вычислительной техникой, знание о том, как происходит представление чисел в памяти компьютера, абсолютно необходимо. Ведь именно на этом основываются языки программирования низкого уровня, такие как Assembler. Поэтому сегодня мы рассмотрим представление чисел в компьютере и их размещение в ячейках памяти.
Система счисления
Если вы читаете данную статью, то, скорее всего, уже знаете об этом, но повторить стоит. Все данные в персональном компьютере хранятся в двоичной системе счисления. Это означает, что любое число необходимо представить в соответствующей форме, то есть состоящим из нулей и единиц.
Чтобы перевести привычные для нас десятичные числа к виду, понятному компьютеру, нужно воспользоваться описанным ниже алгоритмом. Существуют и специализированные калькуляторы.
Итак, для того чтобы перевести число в двоичную систему счисления, нужно взять выбранное нами значение и поделить его на 2. После этого мы получим результат и остаток (0 или 1). Результат опять делим 2 и запоминаем остаток. Данную процедуру нужно повторять до тех пор, пока в итоге также не окажется 0 или 1. Затем записываем конечное значение и остатки в обратном порядке, как мы их получали.
Именно так и происходит представление чисел в компьютере. Любое число записывается в двоичной форме, а потом занимает ячейку памяти.
Память
Как вам должно быть уже известно, минимальная единица измерения информации составляет 1 бит. Как мы уже выяснили, представление чисел в компьютере происходит в двоичном формате. Таким образом, каждый бит памяти будет занят одним значением – 1 или 0.
Для хранения больших чисел используются ячейки. Каждая такая единица содержит до 8 бит информации. Поэтому можно сделать вывод, что минимальное значение в каждом отрезке памяти может составлять 1 байт или быть восьмизначным двоичным числом.
Целые
Наконец мы подобрались к непосредственному размещению данных в компьютере. Как было уже сказано, первым делом процессор переводит информацию в двоичный формат, а только затем размещает в памяти.
Начнем мы с самого простого варианта, коим является представление целых чисел в компьютере. Память ПК отводит под этот процесс до смешного малое количество ячеек – всего одну. Таким образом, максимум в одном слоте могут быть значения от 0 до 11111111. Давайте переведём максимальное число в привычную нам форму записи.
Х = 1 × 2 7 + 1 × 2 6 + 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 1 × 2 8 - 1 = 255.
Теперь мы видим, что в одной ячейке памяти может располагаться значение от 0 до 255. Однако это относится исключительно к целым неотрицательным числам. Если же компьютеру понадобится записать отрицательное значение, всё пройдет немного по-другому.
Отрицательные числа
Теперь давайте посмотрим, как происходит представление чисел в компьютере, если они являются отрицательными. Для размещения значения, которое меньше нуля, отводится две ячейки памяти, или 16 бит информации. При этом 15 уходят под само число, а первый (крайний левый) бит отдается под соответствующий знак.
Если цифра отрицательная, то записывается "1", если положительная, то "0". Для простоты запоминания можно провести такую аналогию: если знак есть, то ставим 1, если его нет, то ничего (0).
Оставшиеся 15 бит информации отводятся под число. Аналогично предыдущему случаю, в них можно поместить максимум пятнадцать единиц. Стоит отметить, что запись отрицательных и положительных чисел существенно отличается друг от друга.
Для того чтобы разместить в 2 ячейках памяти значение больше нуля или равное ему, используется так называемый прямой код. Данная операция производится так же, как и было описано, а максимальное А = 32766, если использовать десятичную систему счисления. Сразу хочется отметить, что в данном случае "0" относится к положительным.
Примеры
Представление целых чисел в памяти компьютера не является такой уж трудной задачей. Хотя она немного усложняется, если речь идет об отрицательном значении. Для записи числа, которое меньше нуля, используется дополнительный код.
Чтобы его получить, машина производит ряд вспомогательных операций.
- Сначала записывается модуль отрицательного числа в двоичном счислении. То есть компьютер запоминает аналогичное, но положительное значение.
- Затем проводится инвертирование каждого бита памяти. Для этого все единицы заменяются нулями и наоборот.
- Прибавляем "1" к полученному результату. Это и будет дополнительный код.
Приведем наглядный пример. Пусть у нас есть число Х = - 131. Сначала получаем его модуль |Х|= 131. Затем переводим в двоичную систему и записываем в 16 ячеек. Получим Х = 0000000010000011. После инвертирования Х=1111111101111100. Добавляем к нему "1" и получаем обратный код Х=1111111101111101. Для записи в 16-битную ячейку памяти минимальным числом является Х = - (2 15 ) = - 32767.
Длинные целые
Как видите, представление вещественных чисел в компьютере не так уж и сложно. Однако рассмотренного диапазона может не хватать для большинства операций. Поэтому, для того чтобы разместить большие числа, компьютер выделяет из памяти 4 ячейки, или 32 бита.
Процесс записи абсолютно не отличается от представленного выше. Так что мы просто приведем диапазон чисел, которые могут храниться в данном типе.
Хмах=2 147 483 647.
Хmin=- 2 147 483 648.
Данных значений в большинстве случаев достаточно для того, чтобы записывать и проводить операции с данными.
Представление вещественных чисел в компьютере имеет свои преимущества и недостатки. С одной стороны, данная методика позволяет проще производить операции между целочисленными значениями, что значительно ускоряет работу процессора. С другой стороны, данного диапазона недостаточно для решения большинства задач экономики, физики, арифметики и других наук. Поэтому теперь мы рассмотрим очередную методику для сверхвеличин.
Плавающая запятая
Это последнее, что вам необходимо знать про представление чисел в компьютере. Поскольку при записи дробей возникает проблема определения положения запятой в них, для размещения подобных цифр в компьютере используется экспоненциальная форма.
Любое число может быть представлено в следующей форме Х = m * р п . Где m – это мантисса числа, р – основание системы счисления и п – порядок числа.
Для стандартизации записи чисел с плавающей запятой используется следующее условие, согласно которому модуль мантиссы должен быть больше или равен 1/п и меньше 1.
Пусть нам дано число 666,66. Приведём его к экспоненциальной форме. Получится Х = 0,66666 * 10 3 . Р = 10 и п = 3.
На хранение значений с плавающей запятой обычно выделяется 4 или 8 байт (32 или 64 бита). В первом случае это называется числом обычной точности, а во втором – двойной точности.
Из 4 байт, выделенных под хранение цифр, 1 (8 разрядов) отдается под данные о порядке и его знаке, а 3 байта (24 разряда) уходят на хранение мантиссы и её знака по тем же принципам, что и для целочисленных значений. Зная это, мы можем провести нехитрые расчеты.
Максимальное значение п = 1111111 2 = 127 10 . Исходя из него, мы можем получить максимальный размер числа, которое может храниться в памяти компьютера. Х=2 127 . Теперь мы можем вычислить максимально возможную мантиссу. Она будет равна 2 23 – 1 ≥ 2 23 = 2 (10 × 2,3) ≥ 1000 2,3 = 10 (3 × 2,3) ≥ 10 7 . В итоге, мы получили приближенное значение.
Если теперь мы объединим оба расчета, то получим значение, которое может быть записано без потерь в 4 байта памяти. Оно будет равно Х = 1,701411 * 10 38 . Остальные цифры были отброшены, поскольку именно такую точность позволяет иметь данный способ записи.
Двойная точность
Поскольку все вычисления были расписаны и объяснены в предыдущем пункте, здесь мы расскажем всё очень коротко. Для чисел с двойной точностью обычно выделяется 11 разрядов для порядка и его знака, а также 53 разряда для мантиссы.
П = 1111111111 2 = 1023 10 .
М = 2 52 -1 = 2 (10*5.2) = 1000 5.2 = 10 15.6 . Округляем в большую сторону и получаем максимальное число Х = 2 1023 с точностью до "м".
Надеемся, информация про представление целых и вещественных чисел в компьютере, которую мы предоставили, пригодится вам в обучении и будет хоть немного понятнее, чем то, что обычно пишут в учебниках.
Читайте также: