Какие из микросхем работают на сетевой карте
Сетевая карта или сетевой адаптер выступает в качестве физического интерфейса между компьютером и средой передачи. Платы сетевого адаптера подсоединяются ко всем сетевым компьютерам и серверам. К соответствующему разъёму платы подключается сетевой кабель.
Сетевая карта - это плата расширения, вставляемая в разъем материнской платы (main board) компьютера (вставляется в слоты расширения). Существуют сетевые адаптеры для нотебуков (notebook), они вставляются в специальный разъем в корпусе нотебука. Также существуют сетевые адаптеры, интегрированные на материнской плате компьютера, Ethernet сетевые адаптеры подключаются к USB (Universal Serial Bus) порту компьютера и позволяют подключаться к сети без вскрытия корпуса компьютера.
Функции сетевого адаптера:
1. Подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю.
2. Передача данных другому компьютеру.
3. Управление потоком данных между компьютером и средой передачи.
4. Приём данных из кабеля и перевод в форму, понятную центральному процессору компьютера.
Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ. Эти программы реализуют функции подуровня “управление логической связью” и “управление доступом к среде”, “канального" уровня модели OSI. Подготовка данных.
Плата сетевого адаптера принимает параллельные данные из шины и организует их для последовательной передачи. Этот процесс завершается переводом цифровых данных компьютера в электрические или оптические сигналы, передающиеся по кабелю (или радиосигнал). Отвечает за это преобразование специальное устройство – трансивер (приёмо-передатчик). Название "Transceiver" происходит от английских слов transmiter (передатчик)и receiver (приемник). Трансивер позволяет станции передавать в и получать из общей сетевой среды передачи. Существуют внутренние трансиверы, встроенные в схему сетевого адаптера и отдельные внешние трансиверы через AUI-кабель. Передача и управление данными. Перед тем как послать данные в сеть сетевой адаптер проводит электронный диалог с принимающей платой, во время которого определяется:
1. Максимальный размер блока передаваемых данных.
2. Интервал между передачами блоков данных.
3. Интервал, в течение которого необходимо послать подтверждение.
4. Объём данных, который может принять плата без переполнения буфера.
5. Скорость передачи.
Если более сложная и быстрая плата взаимодействует с устаревшей, то современная плата подстраивается под устаревшую.
II. Характеристики сетевого адаптера
Сетевые платы характеризуются своей
• Разрядностью: 8 бит (самые старые), 16 бит, 32 бита и 64 бит.
• Шиной данных, по которой идет обмен информацией между материнской платой и сетевой картой: ISA, EISA, VL-Bus, PCI и др.
• Микросхемой контроллера или чипом (Chip, chipset) , на котором данная плата изготовлена.
• Поддерживаемой сетевой средой передачи (network media) , т.е. установленными на карте разъемами для подключения к определенному сетевому кабелю.
• Скоростью работы: 10Mbit 100Mbit, Gigabit.
• Также, карты на витую пару могут поддерживать или не поддерживать FullDuplex - ный режим работы.
MAC –адрес(физический адрес) Сетевой адаптер должен указывать своё местонахождение в сети т.е. иметь адрес, чтобы его могли отличить от остальных плат. Это уникальный серийный номер присваиваемый каждому сетевому устройству для идентификации его в сети. MAC-адрес присваивается адаптеру его производителем Адрес сетевого адаптера находится в ведении комитета IEEE. Этот комитет закрепляет за каждым производителем плат сетевого адаптера некоторый интервал адресов, затем каждый производитель записывает в ПЗУ платы её уникальный адрес. При работе сетевые адаптеры просматривают весь проходящий сетевой трафик и ищут в каждом пакете данных свой MAC-адрес. Если таковой находится, то адаптер принимают эти данные. Существуют также специальные способы по рассылке пакетов всем устройствам сети одновременно (broadcasting). MAC-адрес имеет длину 6 байт и обычно записывается в шестнадцетиричном виде, например 12:34:56:78:90:AB Первые три байта адреса определяют производителя.
III. Факторы учитываемые при выборе сетевой карты:
• Тип шины данных, установленной в вашем компьютере (ISA, VESA, PCI или какой-либо еще). Старые компьютеры 286, 386 содержат только ISA, соответственно и карту вы можете установить только на шине ISA.. Pentium, Pentium Pro, Pentium-2 и им подобные используют ISA и PCI шины данных, причем шина ISA - для совместимости со старыми картами. Наиболее современные, на данный момент, Pentium уже не содержат шины ISA. Установка PCI адаптера, обычно проще чем адаптера ISA.
• Вид кабельной системы используемой в сети. (т.е. СА должна иметь соответствующий разъем) Если, например, вы будете подключаться к сети на коаксиальном кабеле (10Base-2, "тонкий" Ethernet), то вам нужна сетевая карта с соответствующим разъемом BNC).
• Необходимо учитывать поддержку данного адаптера различными операционными системами. Для того, чтобы проверить какие сетевые карты поддерживает ваша ОС надо посмотреть в "Compatibility List". В таком списке указаны чипы, которые поддерживаются, т.е.для них существуют соответствующие драйвера (для Windows, проблем с поиском драйверов, обычно, не возникает).
• Требуемая скорость передачи данных в сети.
IV. Параметры настройки сетевого адаптера.
Для правильной работы платы её параметры должны быть установлены корректно.
В их число входит:
1. Номер прерывания. (IRQ)
2. Базовый адрес порта ввода-вывода. (i/o port)
3. Базовый адрес памяти.
Платы сетевого адаптера могут использовать прерывания IRQ 3, 5, 10, 11, но если есть возможность выбирать, то рекомендуется IRQ 10, так как это значение установлено по умолчанию во многих системах.
Базовый порт ввода-вывода. Определяется канал, по которому передаются данные между устройством компьютера и процессором. Для центрального процессора порт выглядит как адрес, представленный в 16-ричном формате.
Базовый адрес памяти. Указывает на ту область ОЗУ, которая используется платой сетевого адаптера в качестве буфера. Для входящих и исходящих данных этот адрес называют начальным адресом ОЗУ. Некоторые платы имеют параметры, позволяющие задать объём памяти.
Конфигурирование сетевой платы.
Конфигурирование сетевой платы заключается в настройке ее на свободные адрес и прерывание, которые затем будут использоваться операционной системой. Адрес и прерывание(IRQ) для каждой сетевой платы должно быть свое, отличное от других устройств компьютера. Современные сетевые карты, поддерживающие технологию Plug-n-play сами выполняют эту операцию, для всех остальных необходимо проделать ее вручную Поиск незанятых адреса и прерывания зависит от программного обеспечения на нем установленного. Устройство сетевого адаптера.
В состав адаптера входит собственный процессор или процессоры, базовая система ввода/вывода, система буферной памяти и др. Компоненты платы сетевого адаптера:
1.разъем для подключения коаксиального кабеля
2.разъем для подключения кабеля витая пара
3.разъем подключения устройства к системной шине
4.разъем микросхемы постоянного запоминающего устройства системы сетевой загрузки компьютера (BOOT ROM)
5.ПЗУ - система постоянного запоминающего устройства, сохраняющая программно-аппаратные установки карты
6.процессор - микросхема контроллера платы (Chip)
Устройства, укомплектованные системой BOOT ROM способны осуществить загрузку операционной системы компьютера с использованием сетевых ресурсов при отсутствии собственных накопителей.
При возникновении проблемы переноса больших объемов данных между компьютерами и необходимости синхронизации передаваемой информации целесообразным является использование локальной вычислительной сети (ЛВС).
ЛВС может объединять тысячи компьютеров и иметь протяженность несколько километров. ЛВС подразумевает использование кабельных систем, связывающих между собой отдельные компьютеры, а также применение специального оборудования. Одним из элементов этого оборудования является сетевая карта.
Сетевая карта (сетевой адаптер, net card, network card, network adapter ) – плата расширения, устанавливаемая в разъем материнской платы компьютера, которая предназначена для присоединения компьютера к ЛВС и обеспечения обмена данными между ним и сетью.
Современные сетевые карты устанавливаются, как правило, в разъем PCI на материнской плате (устаревшие устанавливались в разъемы ISA, EISA, VL-Bus). Существуют также сетевые адаптеры стандарта PCMCIA для портативных компьютеров. Они вставляются в специальный разъем в корпусе портативного компьютера.
На рынке сетевых устройств встречаются сетевые карты, подключаемые к USB-порту компьютера. Кроме того, существуют и сетевые контроллеры, интегрированные на материнской плате.
Рассмотрим характеристики и особенности современных сетевых адаптеров.
Основными характеристиками сетевых плат являются:
2) Тип шины данных , по которой идет обмен информацией между материнской платой и сетевой картой: ISA, EISA, VL-Bus, PCI, PCMCIA, USB.
3) Скорость передачи : 10Mbit/s (20Mbit/s – в режиме Full Duplex), 100Mbit/s (200Mbit/s – в режиме Full Duplex), 1000Mbit/s.
4) Поддерживаемая сетевая среда передачи (коаксиальный кабель – тонкий или толстый, неэкранированная витая пара – UTP, оптический кабель). Иначе говоря, установленные на карте разъемы для подключения к определенному сетевому кабелю: разъем для коаксиального кабеля (BNC), разъем AUI, разъем под витую пару (RJ-45), разъемы для подключения к волоконной оптике.
Важнейшим элементом любой сетевой карты является микросхема контроллера (чип, chip, chipset). Именно он определяет разрядность, тип шины и т.д.
Еще одна важная микросхема сетевой карты – это микросхема ПЗУ BootROM . Она предназначена для загрузки операционной системы компьютера не с локального диска, а с сервера сети. В результате можно использовать компьютер, не имеющий установленных дисков и дисководов. Для установки BootROM на сетевой карте предусмотрена панелька под Dip-корпус.
Рассмотрим стандарты передачи данных в сетях, аппаратно реализованные в сетевом оборудовании, в том числе и в сетевых картах.
Стандарты определяют правила обмена информацией в сети и сетевые сигналы.
Наиболее распространенными стандартами физического уровня сети являются Ethernet и IEEE 802.3 . Стандарт Ethernet разработан в 70-х годах компанией Xerox, а затем был усовершенствован в результате совместной работы Xerox, Intel и DEC.
IEEE 802.3 был одобрен в 1985 году для стандартизации комитетом по LAN IEEE (Institute of Electrical and Electronics Engineers). Ethernet и IEEE 802.3 описывают схожие технологии. Эти стандарты определяют архитектуры сетей с разделяемой средой и широковещательной передачей. Метод доступа к коммуникационному каналу – случайный доступ с коррекцией ошибок. Оба стандарта реализованы на аппаратном уровне.
Различий между этими стандартами не много. Ethernet определяет один физический уровень сети, в то время как IEEE 802.3 – несколько.
В настоящее время существует несколько уровней или спецификаций , используемых при построении сетей: 10Base-5, 10Base-2, 10Base-T, 10Base-F, 100Base-TX, 100Base-FX, 1000Base-X и т. д. Различаются эти спецификации скоростью передачи, методом передачи сигнала, максимальной длиной сегмента, топологией (топология – физическая или электрическая конфигурация кабельного хозяйства и соединений сети (общая шина, звезда)), сетевой средой.
В локальной сети Ethernet данные передаются в виде блоков, называемых кадрами (frames) . Для успешной доставки в пункт назначения каждый кадр должен помимо данных содержать дополнительную служебную информацию. Так, простейший кадр сети Ethernet – Ethernet_II содержит следующие поля:
1) Преамбула и признак начала кадра (SFD) – предназначены для синхронизации приемной и передающей станций.
2) Адрес получателя DA (Destination Address) и адрес отправителя SA (Source Address). Эти поля имеют длину шесть байтов каждое. Они представляют собой физические адреса сетевых адаптеров и являются уникальными. Первые три байта адреса назначаются каждому производителю сетевых адаптеров. Так, например, в шестнадцатиричной форме первые три байта адреса для адаптеров фирмы Intel имеют значение 00-AA-00, а для адаптеров 3Com – 00-20-AF. Последние три байта адреса определяются самим производителем.
При работе сетевые адаптеры просматривают весь проходящий сетевой поток данных и ищут в каждом пакете свой адрес. Если этот адрес выявляется, то сетевой адаптер декодирует этот кадр.
Существуют также специальные способы по рассылке пакетов всем устройствам сети одновременно (broadcasting – режим широковещательной передачи).
3) Двухбайтовое поле Type – идентифицирует протокол сетевого уровня, пакет которого переносится этим кадром.
5) Контрольная сумма FCS (Frame Check Sequence). Перед пересылкой данных передающая станция рассчитывает контрольную сумму всех полей кадра (за исключением полей преамбулы, SFD и FCS) и помещает полученное значение в четырехбайтовое поле FCS. Станция назначения производит аналогичный расчет, и если результат не совпадает со значением FCS, то кадр “забраковывается”.
Сетевая карта (Ethernet-адаптер, NIC, network interface card) позволяет объединить компьютеры в локальную сеть, например, связать между собой два компьютера. Кроме того, с помощью сетевой карты к компьютеру подключается различное оборудование, например, ADSL-модем, сетевой принтер.
Сетевая карта – это устройство, конструктивно выполненное в виде платы расширения, устанавливается в PCI-слот ПК. Использование встроенной сетевой карты на материнской плате компьютера менее желательно. Так как существенная часть работы перекладывается на драйвер, загружающий центральный процессор работой по передаче кадров из оперативной памяти компьютера в сеть. Хотя, конечно, встроенный адаптер проще в изготовлении и дешевле.
Качественная сетевая карта стоит недорого, и лучше установить дополнительную, так как в случае выхода ее из строя, на время ремонта или замены неисправной карты останется запасной вариант – на МП.
К сетевой карте подключается кабель (витая пара) с наконечником типа RJ-45. Возле разъема для витой пары расположен один или более светодиод. По ним визуально определяется наличие подключения и передача данных.
Основные характеристики сетевой карты
В зависимости от сети, сетевых протоколов и конструктивных особенностей сетевые адаптеры могут выполнять различный набор функций. Главная задача сетевого адаптера – сопряжение компьютера с сетью. Любой адаптер с установленным драйвером выполняет две основные операции: передачу и прием кадров.
Кадр можно условно представить как единицу данных, которыми обмениваются компьютеры в сети Ethernet. Кадр имеет определенный формат и включает в себя как поле данных, так и различную служебную информацию, например адреса получателя и отправителя.
При попадании кадра в среду передачи данных все сетевые адаптеры принимают его одновременно и определяют адрес назначения, который находится в одном из начальных полей кадра. Если адрес совпадает с собственным адресом одного из них. Тогда кадр помещается во внутренний буфер сетевого адаптера и компьютер-адресат получает предназначенные ему данные.
В сетевых адаптерах осуществляется конвейерная схема обработки – процессы приема кадра из оперативной памяти ПК и передачи его в сеть совмещаются во времени. После приема нескольких первых байтов кадра начинается их передача. Это позволяет повысить производительность цепочки ОЗУ-адаптер-физический канал-адаптер-ОЗУ.
Имеет значение порог начала передачи – число байтов кадра. Которое загружается в буфер адаптера перед началом передачи в сеть. Адаптер самостоятельно настраивает свои параметры без участия администратора сети. Самонастройка позволяет оптимизировать скорость передачи для конкретного сочетания производительности внутренней шины компьютера. А так же его системы прерываний и системы прямого доступа к памяти.
Сетевые адаптеры базируются на специализированных интегральных схемах ASIC
Они выполняют функции МАС-уровня и высокоуровневые функции, среди которых: поддержка агента удаленного мониторинга RMON, схема приоритетности кадров, функции дистанционного управления компьютером и т. п. В серверных вариантах адаптеров почти обязательно наличие мощного процессора, разгружающего центральный процессор.
Что дает увеличение пропускной способности канала адаптера – память очень важна для повышения производительности сети в целом. Так как от этого зависит быстродействие сложного маршрута обработки кадров. Для этого требуется
- концентраторы
- глобальные каналы связи
Всегда определяется возможностями самого медленного элемента сети. Если сетевой адаптер сервера или клиентского компьютера работает медленно, даже самые быстрые коммутаторы не увеличат скорость работы сети.
Модули сетевой карты
Сетевой адаптер включает в себя: модуль согласования со средой передачи данных, входной/выходной буфер, микропроцессор, ПЗУ, модуль преобразования параллельного кода в последовательный и модуль согласования с компьютером.
Согласование со средой передачи данных зависит от ее типа. Распространена сеть Fast Ethernet с теоретической пропускной способностью 100 Мбит/с. Средой передачи данных может выступать волоконно-оптический кабель (100Base-F) или медный кабель «витая пара» (100Base-T), который имеет разновидности: экранированный (STP), неэкранированный (UTP), кабель пятой (CAT5) или третей категории (CAT3). При использовании кабеля CAT3 среда называется 100Base-T4.
Наиболее распространены адаптеры для работы с кабелем CAT5, у которого из четырех пар проводов задействованы лишь две. По одной передаются данные, а по другой – принимаются, эта среда называется 100Base-TX.
Модуль согласования со средой передачи данных обеспечивает гальваническую развязку с кабелем, для этого могут использоваться как импульсные трансформаторы, так и оптроны.
Буферы ввода-вывода данных объединены в одной микросхеме с микропроцессором, они используются для промежуточного хранения данных, по принципу «первый пришел – первый вышел» (FIFO). С помощью буфера ввода-вывода данных функции контроля за сетью перекладываются на адаптер. ЦП может не отслеживать момент передачи данных.
Процессор сетевой карты
Микропроцессор адаптера выполняет все основные функции, отвечает за окончательное формирование структуры кадра (добавление MAC-адреса источника и получателя) и вычисление контрольной суммы кадра. Данные передаются по сети не в том виде, в котором они поступают от компьютера к адаптеру, микропроцессор отвечает за логическое кодирование данных и формирование линейного кода.
Передача данных по сети связана с определенными сложностями синхронизации и ширины спектра передаваемого сигнала. При высокой скорости обмена данными и длинных последовательностях нулей или единиц в передаваемой информации даже небольшое рассогласование в тактовых частотах может привести к возникновению ошибок приема.
Для передачи данных применяется специальное логическое кодирование, а при их приеме осуществляется обратное преобразование.
Работой микропроцессора управляют микропрограмма, «зашитая» в ПЗУ процессора, и драйвер адаптера.
Для согласования адаптера с ПК предназначен модуль согласования адаптера с PCI-шиной компьютера, он выполнен в виде отдельной микросхемы.
PCI шины сетевого адаптера компьютера
Существуют типы PCI-шин, которые различаются по тактовой частоте (66– и 33-мегагерцевые). И по ширине шины данных (32– и 64-битные). Для рабочих станций используются, как правило, сетевые адаптеры с поддержкой 32-битной 33-мегагерцевой PCI-шины. А 64-битные многопортовые адаптеры устанавливаются в сервера. Пропускная способность 32-битной 33-мегагерцевой PCI-шины составляет 133 Мбайт/с. А это намного больше пропускной способности сети Fast Ethernet.
Дополнительные функции сетевых адаптеров:
- Автосогласование скорости работы
- Возможность удаленной загрузки
- Поддержка режима Bus Master
- Дистанционное включение (Wake on LAN)
- Управление питанием (ACPI)
Возможность работы в сетях Ethernet 10Base-TX и Fast Ethernet 100Base-TX с автоопределением режима работы (автосогласование) означает. Что адаптер сам определяет максимально возможную скорость функционирования. В этом случае допускается работа адаптера в неоднородной сети. А так же переход от сети Ethernet к Fast Ethernet не требует дополнительных настроек.
Модуль (Boot ROM) позволяет бездисковым рабочим станциям производить удаленную загрузку с сервера. Эта функция используется редко, некоторые сетевые адаптеры поддерживают ее опционально – есть место для установки специальной микросхемы памяти (Boot ROM), которая приобретается отдельно.
Режим Bus Master обеспечивает передачу данных непосредственно между адаптером и оперативной памятью компьютера, без ЦП. Это снижает загрузку процессора компьютера при передаче и получении данных по сети.
Дистанционное включение (Wake on LAN) позволяет запускать ПК по сети, если МП поддерживает такую возможность. Для этой цели используются 3-контактные разъемы на МП и сетевом адаптере, соединяемые специальным кабелем. Кроме того, необходимо и специальное программное обеспечение.
Поддержка режима управления питанием ACPI, позволяющая снизить энергопотребление реализуется как программными, так и аппаратными методами.
Характеристика Сетевого Адаптера
Главная характеристика адаптера – показатель его производительности – это пропускная способность. Реальная производительность адаптера зависит от конкретной модели и может быть существенно ниже, чем заявлено в спецификации.
Важной характеристикой адаптера и его драйвера является степень использования ЦП при максимальной скорости передачи. Сравнивая два адаптера с равными пропускными способностями, нужно выбрать тот, который меньше нагружает процессор.
При высокой сетевой активности компьютер с таким адаптером, который сильно загружает ЦП, будет «подвисать». Делая невозможным запуск каких-либо приложений.
Индекс эффективной производительности (Performance/Efficiency Index Ratio, P/E). Это отношение пропускной способности адаптера (измеряемой в мегабитах в секунду) к степени утилизации центрального процессора (измеряемой в процентах). Его значение позволяет сравнивать адаптеры между собой – чем выше индекс, тем более производительным является адаптер.
Ниже мы вкратце познакомимся с основным сетевым оборудованием для локальной сети.
Сетевая карта
Сетевые карты отвечают за передачу информации между ПК в сети. Каждая карта имеет свой индивидуальный Mac - адрес .
MAC - адрес сетевой карты - это уникальный идентификатор , предоставленный ей изготовителем. В сетях Ethernet он позволяет идентифицировать каждый узел сети и доставлять данные только этому узлу.
- установленная микросхема контроллера (микрочип);
- разрядность – имеются 32- и 64-битные сетевые карты (определяется микрочипом);
- скорость передачи – от 10 до 1000 Мбит/с;
- разъем под тип подключаемого кабеля (коаксиальный, витая пара, волоконно-оптический кабель) – рис. 1.8.
Рис. 1.8. Сетевые карты на коаксиал и витую пару
Концентратор (хаб) и коммутатор (свитч)
Концентратор ( хаб ) используется, если в сети участвует больше 2 компьютеров. К нему сходятся все сетевые кабели витой пары в топологии звезда . Сигнал хаба получают все ПК сети, а не только та сетевая карта , которой адресован пакет данных. В настоящее время концентраторы сняты с производства и встречаются редко. Внешне свитч или коммутатор ( Switch ) практически не отличается от Hub , но коммутатор ( Switch ) - более интеллектуальное устройство, где есть свой процессор , внутренняя шина и буферная память . Если концентратор просто передает пакеты от одного порта ко всем остальным, то Switch анализирует Mac адреса, откуда и куда отправлен пакет информации и соединяет только эти компьютеры, в то время как остальные каналы остаются свободными. Это позволяет намного увеличить производительность сети, так как уменьшает количество паразитного трафика и обеспечивает большую фактическую скорость передачи данных, особенно в сетях с большим количеством пользователей – рис. 1.9.
Итак, концентратор обозначается значком и его основная функция - это повторение сигналов, поступающих на один из его портов, на всех остальных портах ( Ethernet ).
Сетевой коммутатор , или свитч, обозначается значком и в отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.
Давайте рассмотрим принцип работы коммутатора более детально. Коммутатор хранит в памяти таблицу, в которой указывается соответствие MAC -адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры и, определив MAC - адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр , предназначенный для хоста, MAC - адрес которого уже есть в таблице, то этот кадр будет передан только через порт , указанный в таблице. Если MAC - адрес хоста-получателя еще не известен, то кадр будет продублирован на все интерфейсы. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.
Маршрутизатор (роутер)
Маршрутизатор - сетевое устройство, которое на основании информации о топологии сети и определённых правил принимает решения о пересылке пакетов между различными сегментами сети. Обозначается значком - рис. 1.10.
Рис. 1.10. Беспроводной маршрутизатор D-Link 300Мбит/с (DIR-615/E4B)
Принцип работы маршрутизатора таков: он использует адрес получателя, указанный в пакетах данных, и определяет по таблице маршрутизации путь , по которому следует передать данные. Маршрутизатор может выбрать один из нескольких маршрутов доставки пакета адресату.
Маршрут - последовательность прохождения пакетом информации узлов сети.
Сетевые адаптеры (практикум)
В небольшой практической работе ниже исследуется сетевая карта , вынутая из ПК и вставленная в ПК. В скринкасте показано практическое применение команды ipconfig/all.
Задание 1. Изучение сетевой карты, вынутой из ПК
Сетевая карта – плата , устройство, устанавливается в материнскую плату ( рис. 1.11). Другое название сетевой карты – сетевой адаптер . Сетевая карта служит для соединения компьютера с другими компьютерами по локальной сети или для подключения к сети Интернет . Современные материнские платы имеют встроенную сетевую карту.
Выбор производителя сетевой карты важен по следующим параметрам:
- надежность работы
- поддержка драйверами
- скорость
Когда речь идет о построении надежной и быстрой сети с богатыми возможностями мониторинга и управления, лидерами являются компании Intel и 3Com. Параметры сетевых карт определяются используемыми в них чипами. В современных картах обычно есть один большой чип, выполняющий функции контроллера шины и собственно сети. Среди других микросхем карты - приемопередатчик, энергонезависимая память , возможно ПЗУ для удаленной загрузки. Производителей чипов сетевых контроллеров гораздо меньше, чем производителей сетевых карт. При этом одни практически монополизируют выпуск карт на своих чипах (3Com, Intel), а другие (Realtek, Via ) занимаются исключительно выпуском микросхем и их продажей.
Практическая часть
1.Осмотрите сетевую карту, вынутую из ПК. Определите тип шины ( интерфейс ), к которой она подключается. Для этого посмотрите на ту часть сетевой карты, которая имеет контакты. Если длина этой стороны менее 10 см, то карта подключается к шине PCI . Кроме типа интерфейса у сетевых карт есть несколько других, менее важных параметров:
- поддержка Boot ROM (загрузка ПК без жесткого диска по сети)
- поддержка Wake On Lan (включение ПК по сети)
- поддержка режима Full Duplex (одновременные прием и передача информации, требуют поддержки этого режима от всего остального оборудования сегмента сети)
- количество индикаторов на задней панели
2. Определите тип физической среды (кабеля), с которой работает сетевая карта . Посмотрите на металлическую пластину, к которой крепится карта. Круглый коннектор свидетельствует о том, что эта карта для коаксиального кабеля; разъем RJ-45 – для работы с витой парой. Найдите в Интернет ответ на вопрос о коннекторе для оптического кабеля самостоятельно.
Задание 2. Изучение сетевой карты, вставленной в ПК (скринкаст)
В Windows XP выполните команду Пуск-Панель управления-Система-Оборудование-Диспетчер устройств и раскройте список Сетевые платы ( рис. 1.12).
увеличить изображение
Рис. 1.12. В ПК установлена только одна сетевая плата
В Windows 7 выполните команду Пуск-Панель управления-Оборудование и звук-Диспетчер устройств и раскройте список Сетевые адаптеры ( рис. 1.13).
Рис. 1.13. В ПК установлено два сетевых адаптера
Если у вас на сетевой плате нет желтых восклицательных знаков и красных крестиков, то ее драйвер установлен и работает корректно. Если напротив сетевого адаптера отображен восклицательный знак на фоне желтого круга, то драйвер конфликтует с другим устройством. Если напротив сетевой карты появился красный крестик, то драйвера вообще нет и его следует искать и устанавливать.
Определите физический ( MAC ) адрес адаптера. Для этого в Windows XP (или Windows 7) выполните команду Пуск-Все программы-Стандартные-Командная строка и введите команду ipconfig/all. Выведенный командой результат выглядит примерно так ( рис. 1.14).
увеличить изображение
Рис. 1.14. Физический адрес и есть МАС-адрес сетевого адаптера
Краткие итоги
По материалам лекции мы изучили виды сетевого оборудования: cетевые кабели, адаптеры, концентраторы , коммутаторы, маршрутизаторы, а также познакомились с их характеристеками (параметрами). В практических заданиях к лекции исследуется сетевая карта , вынутая из ПК и вставленная в ПК. Анализ команды ipconfig показал, что сетевой адаптер работает нормально, а также мы узнали МАС адрес сетевой платы. Расшифровку остальной информации на экране ПК сделаем позднее. К лекции прилагается скринкаст.
Читайте также: