Какие химические компоненты растение способно поглощать из атмосферы
Поглощение воды и минеральных веществ растением непосредственно не связано друг с другом. Поглощение воды протопластом основывается на гидрофильности биоколлоидов, а поглощение ионов - на образовании лабильных соединений с макромолекулами протоплазмы.Поэтому поглощение воды не может вызвать поглощения солей, а поглощение ионов может вызвать изменения в оводненности протоплазматических структур и повлечь за собой поглощение воды.
Определяющим условием поглощения растениями минеральных элементов является поглощающая способность почвы. Вопросы поглощения почвой различных ионов были изучены русским ученым Гедройцем. Согласно его теории катионы в коллоидах почвы способны обмениваться с катионами почвенного раствора. Эти катионы называются поглощенными или обменными, а общее их количество на 100 г почвы (в мг/экв) называется емкостью поглощения или емкостью обмена. Адсорбция и удерживание растворимых веществ - это свойство почвы, которое называется поглощающей способностью. Эта способность определяется коллоидной частью почвы, которая называется почвенным поглощающим комплексом. От состава обменных катионов зависят свойства почвы.
Различают пять видов поглощения веществ почвой:
механическая поглощающая способность (при этом почва выступает в качестве фильтра для грубых суспензий),
физическая поглощающая способность (при этом происходит либо положительная адсорбция катионов на поверхность твердых частиц, либо отрицательная фильтрация анионов,
физико-химическая поглощающая способность (при этом происходит адсорбция и обменные химические реакции между почвенным раствором и почвенными частицами, что играет существенную роль в создании плодородия почв),
химическая поглощающая способность (при этом происходит превращение веществ в трудно растворимые соединения, например, при внесении фосфорных удобрений в почву, богатую ионами кальция, образуется нерастворимый фосфат кальция,
биологическая поглощающая способность (при этом происходит иммобилизация минеральных веществ под влиянием деятельности микрофлоры почвы).
Благодаря поглощающей способности почвы минеральные элементы не вымываются из почвы, сохраняются в почвенном растворе и доступны растениям.
Минеральные вещества поглощаются из почвы одновременно с поглощением воды и транспортируются в восходящем направлении преимущественно по ксилеме. Минеральные вещества обычно накапливаются в тех клетках, где в них возникает необходимость.
Для удовлетворения потребности растений в соответствующем количестве минеральных веществ, необходимых для роста и развития, должно быть соблюдено несколько условий:
минералы должны содержаться в почве в форме, доступной для их поглощения клетками корня, т.е. они должны находиться в почвенном растворе,
почва должна хорошо аэрироваться, чтобы в клетках корня могло происходить окислительное фосфорилирование (дыхание), поскольку поглощение минеральных веществ требует непрерывного снабжения энергией за счет АТФ,
должна эффективно функционировать транспортная система по доставке минеральных веществ к потребляющим клеткам.
На разных этапах развития растительного организма питательные вещества потребляются ими с различной интенсивностью, неодинакова также скорость поступления различных соединений у разных видов растений.
Отрицательное действие высоких концентраций питательных солей в почве проявляется в основном на первых этапах жизни растения, особенно в момент прорастания семени, поэтому повышенное содержание минеральных элементов в почвенном растворе часто снижает всхожесть и энергию прорастания семян. В связи с этим важно обеспечить необходимый уровень влаги в почве и регулировать уровень минеральных удобрений непосредственно в послепосевной период.
Недопустимо однократное внесение всей рекомендованной дозы минеральных удобрений в период посева, поскольку это снижает эффективность усвоения азотных удобрений и вызывает превышение допустимых концентраций других элементов в почвенном растворе.
Системы классификаций элементов в растении.
Растение поглощает углекислый газ и кислород из атмосферы, а воду и другие минеральные элементы - из почвенного раствора. Все минеральные элементы за исключением азота происходят в конечном счете из материнской породы, из которой образуется почва и при сгорании остаются в золе, почему и называются зольными элементами. Азот же, находясь в атмосфере, переводится в форму, доступную для автотрофов при синтезе белка, азотфиксирующими микроорганизмами, находящимися в почве, и в результате их метаболизма поступает в виде аммиачных и нитратных ионов в почвенный раствор.
Минеральные вещества составляют всего от 1 до 15% живой материи. Количество золы в различных частях растения, а также в разных растениях неодинаково. Состав зольных элементов также весьма вариабелен в зависимости от органа растения. Например, калия в семенах зерновых культур почти в два раза больше, чем в листьях и стеблях. В стеблях и листьях пшеницы и кукурузы отмечено большое количество кремния.
Как правило, распределение зольных элементов в разных органах растения соответствует следующей таблице:
Наименование органа растения | Содержание зольных элементов,% |
древесина | |
семена | |
корни, стебли | 4-5 |
листья | 10-15 |
Содержание зольных элементов в растительных тканях зависит от типа и влажности почвы и от фазы развития растений.
Принято делить минеральные элементы, входящие в состав растительных клеток, на группы, причем используются в основном две системы классификации элементов.
В основу первой системы классификации положен критерий количественного содержания элементов в растении:
макроэлементы (составляют от 10 до 0,01% в клетке) (органогены - О, Н, С, N, P и минералы -Si, K, Ca, S, Mg, Na, Al),
микроэлементы (составляют от 0,001 до 0,00001%) -Mn, B, St, Cu, Zn, Br, F, Sn, Ni, Ti, Rb, Fe, Ba, Mo, Co, Cl, I,
ультрамикроэлементы (составляют 10 -6 -10 -12 %) -As, Ge, Pb, Au, Ra, Hg, Ag, Li.
Вторая система классификации основывается на роли минеральных элементов в живой клетке:
основные компоненты органического вещества -C, H, O, N, P, S,
элементы, участвующие в осмотической регуляции, балансе электронов, и определяющие проницаемость мембран -K, Mg, Ca, Mn, Cl,
элементы, входящие в ферментные системы, - Cu, Zn, Mo, Fe. Эти элементы часто поглощаются в форме хелатов, находятся в протопласте и способны вытеснять друг друга при избытке какого-либо из них в следующем порядке Cu>Zn>Mo>Fe.
элементы, токсичные для высших растений -F, I, Ni, Cr, Pb, Cd.
Ряд элементов, весьма важных в малых концентрациях, при накоплении в избыточном количестве могут быть токсичными для растений, например Mn, Cu, Fe, B.
Для определения роли того или иного элемента в питании растений проводят специальные опыты с использованием водных или песчаных культур, других специализированных методик.
Какие химические элементы растения могут получать из атмосферы самостоятельно?
Б)азот, серу ,фосфор
В растениях можно найти присутствие практически всех элементов которые есть на нашей планете, но что особенно удивительно им они не требуются, им достаточно только 13 полезных химических элемента.
Эти элементы делятся на макроэлементы и микроэлементы:
Если же какого-то микроэлемента либо макроэлемента не достает то как следствие растение становится более слабым и урожай (если это посаженное человеком растение)будет плохим либо маленьким.
Но кроме этих тринадцати необходимых элементов, которые находятся в почве есть и три которые организм растения получает самостоятельно из воздуха и из воды.
Из воды растение забирает водород.
А вот из воздуха он получает углерод и кислород, поэтому правильный ответ на вопрос "Какие химические элементы растения могут получать из атмосферы самостоятельно будет такой :
А) углерод и кислород.
Если взять так сказать домашнее отопление то по вредности при сжигании виды топлива распределяются следующим образом:
на первом месте находится уголь, на втором жидкое топливо и на третьем, самым безвредным так сказать является газ. Очень вредными являются также выхлопные газы от старых несовершенных и конечно крупных грузовых автомобилей.
А самые вредные выбросы? Еще недавно я бы не ответил вам на этот вопрос. так как информация являлась секретной. Выбросы от ракетного топлива ракет 60-х, семидесятых годов.
Сейчас слава Богу сняты с вооружения.
одна атмосфера это 1 кгс/см2 - 760 миллиметров ртутного столба(мм рт ст)- давление, равное столба ртути высотой 760 мм при 0 °C, плотность ртути 13595,1 кг/м³ - сегодня в системе единиц си это 101 325 Паскалей (Па)
Циклоны образуются обычно над морями и океанами, реже циклон образуется над сушей. Циклон образуется при поднятии вверх тёплого и влажного воздуха, что вызывает осадки. В циклоне воздушные потоки движутся по спирали (против часовой стрелки в северном полушарии и в южном полушарии - наоборот). Это связано с вращением Земли вокруг своей оси, это вращение Земли создаёт силу Корлиолиса. Эта сила воздействует на движение воздуха и на движущиеся объекты в воздухе (самолёты, вертолёты, и так далее). Ветры вокруг циклона движутся по спирали, и ветер при этом может быть очень сильным. Вокруг антициклона в северном полушарии Земли воздух движется по часовой стрелке, в южном полушарии наоборот. Антициклон образуется там, где сходятся высотные поднятые потоки воздуха, идущие от циклонов, этот холодный воздух начинает оседать на Землю, и атмосферное давление при этом растёт. Чаще всего антициклон образуется над сушей. Различие во вращении воздуха в разных полушариях в соответствующих атмосферных вихрях, это связано с направлением действия силы Корлиолиса.
Конечно антропогенные факторы очень важны. Но есть еще и природные факторы, например вулканическая деятельность.
Выделение (т/сут) некоторых газообразных веществ
Диоксид серы - 0,4
Сероводород 0,3 0,01
Оксиды азота 2 0,2
Углеводороды 2 0,2
Оксид углерода 10 1
Диоксид углерода 3000 50
Согласно данным в таблице, природные источники выделяют больше вредных веществ, тем не менее, самым опасным является именно антропогенное поступление. Это связано с тем, что вредные вещества антропогенного происхождения, часто не свойственны атмосфере, и являются лишними для нее. Они накапливаются именно в зоне обитания человека. Специфические вредные вещества, не существовавшие ранее в природных условиях в настоящее время становятся составной частью атмосферного воздуха, его микроэлементами. Атмосфера принимает их, "запоминает", они становятся ее частью. Ну а из антропогенных факторов, главные уже названы: промышленность и транспорт.
Когда-то в науке и в технике использовалось несколько систем измерений. Обычно их называли по первым буквам названий единиц основных физических величин. В науке (в физике) использовалась система СГС (сантиметр, грамм, секунда). В технике преобладала так называемая техническая система МКГСС (метр, килограмм-сила, секунда). В начале 60-х в СССР стали вводить систему СИ (система интернациональная, основные единицы - метр, килограмм-масса, секунда). Казалось бы то же самое, по в МКГСС основной была единица СИЛЫ, а в СИ - единица МАССЫ. Хотя название одинаковое, но понятия совершенно различные. Вот мы что-то покупаем на рынке, например килограмм ягод. Продавцы на рынке взвешивают на пружинных весах (безменах). Безмен измеряет силу притяжения груза к земле, поэтому он даёт значение СИЛЫ и мы покупаем килограмм ВЕСА (СИЛЫ). Если же мы взвешиваем на рычажных весах, то мы определяем килограмм массы и покупаем килограмм массы. Килограмм силы и килограмм массы численно равны, и мы никогда особо не задумываемся, с каким килограммом имеем дело. Чтобы отличать килограмм силы от килограмма массы договорились, килограмм силы писать с прописной буквой Г, т.е "кГ", а килограмм массы - со строчной буквой "кг".
В системе МКГСС единицей давления была такая величина, когда на 1 см^2 поверхности действует сила в 1 кГ. Её назвали "атмосфера техническая", сокращенно "ат". В системе СИ давление измеряется в Паскалях (1 кГ/см^2= 98066,5 Па). В практическом применении эта единица неудобная, непривычная, и ею мало кто пользуется. А атмосфера - удобная величина, тем более, что такое давление создаёт столб воды высотой 10 м. В технике очень часто вместо понятия давление используют понятие напор, выражаемый обычно в метрах водяного столба, т.е. 10 м вод.ст. = 1 ат.
И если бы у нашей земли атмосфера была меньше или больше, то всё бы было ничего. Но к "несчастью" (для учеников и студентов) атмосфера оказалась такой, что её давление оказалось 1,033 кГ/см^2 т.е. близко к 1 ат. Для давления атмосферы была введена самостоятельная единица физическая атмосфера, и чтобы отличать её от технической, сокращённо её стали писать атм (от слова атмосфера). Итак 1 атм=1,033 ат, или 1 ат= 0,96784 атм. Невысокие давления принято измерять во внесистемных единицах миллиметрах ртутного столба. 1 атм=760 мм рт.ст. 1 ат= 735,56 мм рт.ст.
З агрязнение окружающей среды оказывает губительное влияние на растительные организмы. Однако многие представители флоры сумели приспособиться к новым условиям обитания. Более того, они научились очищать воздух, почву и воду от вредных химических элементов.
Вредные вещества, поллютанты – пестициды, гербициды, органические растворители, тяжелые металлы, радионуклиды – чаще всего попадают в растительные организмы через корневую систему или листья (через устьица или кутикулу эпидермиса). Соединения, поглощенные корнями, переносятся в надземные части растений или откладываются в запасающих органах.
Разрушающее воздействие
Все загрязняющие вещества могут необратимо влиять на растительные организмы, вызывая как морфологические, так и физиолого-биохимические изменения. Эти воздействия, как правило, носят неспецифичный характер. К примеру, тяжелые металлы и радионуклиды, попадая в растительные клетки, могут взаимодействовать с различными белками, что приводит к изменениям клеточного метаболизма – нарушаются процессы фотосинтеза, дыхания, меняются функции клеточных мембран и т. д.
На морфологическом уровне могут происходить изменения размеров, формы, окраски листьев и цветков, их увядания или опадения. Нередко усыхает крона деревьев, нарушается целостность коры, деформируется корневая система, срастаются некоторые органы. У хвойных деревьев отмечают изменения в размерах хвоинок. При сильных атмосферных загрязнениях у различных древесных и кустарниковых наблюдают нарушение интенсивности ветвления.
Атмосферные поллютанты также могут воздействовать на пыльцу растений, изменяя поверхность и форму пыльцевых зерен, нарушая целостность оболочек и вызывая их слипание.
В целом характер воздействия загрязняющих веществ зависит от их количества в окружающей среде, от их химического строения, а также от генетических и видовых особенностей самих растений, которые различаются по устойчивости к токсическому воздействию повышенных концентраций загрязняющих веществ.
Адаптация и фиторемедиация
Благодаря механизмам адаптации, действующим на разных организменных уровнях, в фитоценозах постепенно отбираются популяции, способные развиваться и расти без серьезных нарушений физиологических процессов при довольно высоких концентрациях загрязняющих веществ в среде.
Так, к примеру, постоянное накопление тяжелых металлов у одних видов сначала вызывает стимуляцию роста, а затем угнетение и гибель. У других же по мере увеличения содержания вредных веществ включается механизм, препятствующий их поглощению. Такое ограниченное поглощение наиболее характерно для опадающих частей (например, листьев) и репродуктивных органов (цветков) растений, неограниченное – для корней, древесины, стеблей.
Растения-фильтры
Травянистые растения применяют для фитостабилизации загрязнений – уменьшения их мобильности в почве за счет адсорбции или осаждения на корнях в виде нерастворимых соединений (фосфатов, карбонатов, гидроксидов и т. д.). При этом обычно выбирают виды, устойчивые к загрязнениям, способные образовывать плотный травянистый покров, связывать поллютанты в процессе интенсивного корневого обмена.
К примеру, при создании газонов на кислых почвах с повышенным содержанием меди, цинка высаживают различные виды полевицы и овсяницы, на известковых почвах с повышенным содержанием свинца вводят некоторые бобовые.
Бобовые растения совместно с микроорганизмами-симбионтами из прикорневой зоны также могут участвовать в биодеградации – разложении различных органических поллютантов.
Улучшить почвы с повышенным содержанием свинца помогают бобовые
Некоторые растения – осоковые, различные виды фасоли, пшеницы, риса – способны к фитотрансформации пестицидов, растворителей, топливных остатков, преобразуя (метаболизируя) их при помощи собственных внутриклеточных ферментных систем.
Крестоцветные используют для фитоэкстракции – извлечения загрязнений из почвы. Они являются аккумуляторами тяжелых металлов и радионуклидов, которые поступают в растения через корневую систему и откладываются в надземных органах (стеблях и листьях). Растительную биомассу затем можно собрать и переработать. Наиболее широко фитоэкстракцию используют для удаления из почвы свинца, цинка, кадмия, никеля.
Достаточно активно способны аккумулировать тяжелые металлы также и некоторые виды папоротников, которые являются типичными представителями лесных экосистем.
К примеру, страусник обыкновенный способен поглощать из почвы и накапливать в листьях ионы кадмия, который при этом не оказывает существенного ингибирующего воздействия на зеленую (фотосинтезирующую) часть самого растения.
Страусник обыкновенный способен поглощать из почвы ионы кадмия
Древесные биофильтры
Деревья и кустарники часто используют как эффективные и естественные биофильтры в городах и сельской местности:
- они обладают высокой продуктивностью;
- способны поглощать загрязняющие вещества из нескольких почвенных горизонтов, благодаря большой поверхности и объему корневой системы;
- могут адсорбировать пылевые и аэрозольные частицы на высоте до 30 м;
- достаточно быстро адаптируются к смене окружающей среды.
Так, к примеру, для создания фитозаградительных барьеров вдоль автомагистралей, улиц с активным движением транспорта для защиты воздушной и водной сред часто высаживают различные виды тополя, клена, каштана, липы. Осину, различные виды берез, сосну используют при проведении комплексных работ по фитомелиорации – очистке почвы от нефти и нефтепродуктов.
Береза способствует очистке почв от нефти и нефтепродуктов
При проведении мероприятий по очистке территорий, загрязненных радионуклидами, высаживают манчьжурский орех и амурский бархат, которые считаются гораздо более устойчивыми к радиационному воздействию, чем хвойные деревья и многие лиственные породы. Эти виды отличаются способностью к быстрому вегетативному восстановлению (корневой и пневой порослью) после облучения, а также обладают сильно развитой листовой и корневой поверхностью, что позволяет им удерживать пылевые частицы и капли воды с радионуклидами и локализовать их в ветках, коре, древесине, плодах.
Клен очищает воду и воздух возле автомагистралей
Корневые симбиозы. Микориза
Грибы внутри тканей корня
Селекция и инженерия
Для получения растений, устойчивых к неблагоприятным антропогенным воздействиям, активно применяют методы современной клеточной селекции, а также генетической клеточной инженерии.
К примеру, специально выведенные гибридные тополя способны трансформировать и разрушать различные растворители, в том числе и хлорорганические. Они также обладают глубоко проникающей корневой системой, высокой скоростью роста, способны хорошо адаптироваться к различным климатическим условиям.
Особое внимание также уделяют получению растений-гипераккумуляторов тяжелых металлов. За основу берут виды с высокой продуктивностью и вводят бактериальный геном, который отвечает за формирование у растений способности адсорбировать или трансформировать поллютанты в значительных количествах. Особо эффективно этот метод применяют для выведения устойчивых газонных трав.
Грибы-аккумуляторы
Достаточно интенсивно способны поглощать и накапливать тяжелые металлы грибы. Интересно, что отдельные виды обладают определенной избирательностью по отношению к этим элементам.
К примеру, грибы-зонтики наиболее активно аккумулируют кадмий, свинушки, грузди, сыроежки, некоторые виды дождевиков – медь, шампиньоны и белые грибы – ртуть.
Грибы также активно способны сорбировать из лесной подстилки радионуклиды, в частности радиоактивный цезий. Так, в первые годы после аварии на Чернобыльской АЭС грибы использовали как биоиндикаторы радиоактивного загрязнения.
Шампиньоны активно аккумулируют ртуть
Наиболее активно из субстрата грибами поглощаются легкорастворимые соединения тяжелых металлов и радиоизотопов. В молодых плодовых телах отмечают более высокие их концентрации, чем в старых. Наибольшие количества, как правило, аккумулируются в шляпках грибов, особенно в гименофорах. Со временем в условиях постоянного загрязнения эти элементы могут накапливаться в мицелии.
Интенсивность поглощения и накопления тяжелых металлов и радионуклидов грибами сильно зависит от условий окружающей среды, в первую очередь от плотности, состава и степени увлажнения субстрата. К примеру, было установлено, что на увлажненных лесных почвах грибы гораздо интенсивнее накапливают радиоизотопы, чем те же виды, растущие на почвах с глубоким залеганием грунтовых вод. Определяющими также являются различные видовые особенности, в частности глубина расположения мицелия, тип питания. Так, в грибах-симбионтах содержится больше тяжелых металлов, чем в древоразрушающих грибах-сапрофитах.
При употреблении в пищу съедобных грибов, собранных в лесах с высокой степенью техногенного загрязнения, высока вероятность тяжелых отравлений и внутреннего облучения. Даже кулинарная обработка (например, последовательная варка с неоднократной сменой воды) не всегда приводит к снижению концентрации вредных веществ до допустимых величин.
Для справки:
Фиторемедиация – очистка окружающей среды при помощи растений.
Фитостабилизация – уменьшение мобильности поллютантов в почве за счет адсорбции или осаждения на корнях в виде нерастворимых соединений.
Биодеградация – разложение различных органических поллютантов.
Фитоэкстракция – извлечение загрязнений из почвы.
Фитомелиорация – очистка почвы от нефти и нефтепродуктов.
Строение дерева. От клеток до корней
Строение растений мы изучали еще в школе. В этой статьей мы решили напомнить, что из себя представляет дерево, и рассказать о каждой из его частей: клетках и тканях, древесине и коре, ветвях и ветках, листьях и корнях.
Свойства древесины разных пород
Еще пару веков назад ни сельское хозяйство, ни строительство, ни промышленность не обходились без древесины. Не потеряла она своего важного значения и сегодня
Растения являются настоящими живыми организмами. Для их полноценного развития необходимо соблюдать жизненно важные условия. Они должны иметь в достаточном количестве свет, влагу, воздух и питание. В этой статье мы подробно поговорим о питании растений. Зачастую, почва содержит в себе огромное количество питательных элементов. Она просто напичкана пищей для растений. Но тем ни менее мы тратим огромное количество денег на удобрения. Давайте рассмотрим, чем же питаются растения и как их можно накормить.
Если вы оглянетесь вокруг, то можете заметить, что в природе почвы редко, когда истощаются. Хотя они производят растительности намного больше, чем на наших самых лучших полях. При этом хочу обратить внимание на то, что это происходит без всякого дополнительного труда, без привнесений различных веществ и энергии извне. А если вы обратите внимание на старые заброшенные колхозные поля, то сможете заметить, что постепенно, год от года плодородие на них восстанавливается.
А что же происходит на наших огородах? Из года в год мы стараемся повысить плодородие, а оно зачастую не только не улучшается, а наоборот, только ухудшается. Ежегодно мы перекапываем землю, вносим различные удобрения, удаляем ненужные сорняки. И что же мы получаем в итоге? При огромных трудозатратах, получаем минимальный урожай. Растения не выглядят здоровыми и довольными, несмотря на всю нашу заботу, они ослаблены и болеют. Так что же мы делаем не так? Давайте разбираться.
Для начала разберём и поймём, что же кушают растения, в каких количествах и что является источником питания. Посмотрим, как это выглядит на природных почвах и на почвах наших участков.
Природная почва – структурная почва, т.е. естественное состояние естественной почвы. Это та почва, к которой никогда или многие годы не прикасалась рука человека. В этой почве восстановлены все природные процессы, которые происходят в почве в дикой природе.
Структура почвы нарушается в результате механической обработки земли, например, перекопки. В результате почва становится бесструктурной. К чему это приводит мы сейчас увидим.
Большинство элементов питания растение поглощает из почвы, из воды получает кислород, из воздуха – кислород и углерод.
В растительных организмах можно встретить более 70 различных химических элементов, но только 17 являются жизненно необходимыми для растения. Критерием необходимости элемента является то, что при нехватке этого элемента возникают нарушения в процессах жизнедеятельности растения. К жизненно необходимым элементам относятся: азот, фосфор, кальций, калий, магний, сера, медь, железо, хлор, бор, молибден, марганец, цинк, кобальт. Это всё элементы, которые в основном поглощаются растениями из почвы. Но существуют ещё элементы, которые необходимы растениям – это углерод, водород и кислород, которые находятся в атмосфере, углекислом газе и в воде.
Существуют и такие элементы, которые не являются необходимыми, но присутствие, которых положительно влияет на развитие растения и повышает урожайность. К таким элементам относят натрий, кремний, ванадий и алюминий.
В зависимости от количества потребления растениями элементов, все элементы подразделяют на три группы: макроэлементы, мезоэлементы и микроэлементы.
Макроэлементами называют элементы, которые растения поглощают в сравнительно больших количествах. К таким элементам относят кислород, углерод, водород, азот, фосфор, калий.
Микроэлементами называют элементы, которые растениям необходимы в очень небольших количествах, но они оказывают сильное воздействие на ход жизненных процессов. К таким элементам относят бор, марганец, медь, цинк, молибден, кобальт и другие.
Мезоэлементами называют элементы, которые растениям необходимы в средних количествах. Они занимают промежуточное значение между макро- и микроэлементами. К таким элементам относят Кальций, магний, серу и другие элементы.
Некоторые из элементов играют важную физиологическую роль в питании только однолетних видов растений. Так натрий улучшает рост и развитие свёклы, цикория, топинамбура, но совершенно не влияет на злаки.
Содержание в растениях отдельных химических элементов не бывает постоянным. Оно изменяется в зависимости от видовых особенностей растения, его возраста, развития и места произрастания.
Меньше колеблется в растениях количество углерода, кислорода и водорода.
Содержание азота, фосфора и калия наиболее высокое в молодых растениях. С возрастом их количество снижается.
Молодое растение больше поглощает минеральных веществ из почвы, чем взрослое.
Во взрослом растении уже много образовалось таких веществ, которые быстро преобразуют минеральные соли в органические соединения.
Меняется и потребность растений в получении минеральных веществ из вне. В период бурного роста они потребляют больше азота, в пору плодоношения особенно нуждаются в фосфоре.
Атмосфера.
Её производные - осадки и пыль, очень близки по своему составу с составом почвы. Структурная почва получает из воздуха кислород, азот, воду и углекислый газ, а также нитраты, сероводород, метан, аммиак, фосфор, йод. Атмосфера также даёт пыль, которая является вполне достаточной субстанцией для растений, которые живут без почвы, например, таких, как лишайники, бромелии, орхидные.
Минеральная основа
Минеральной основой являются песок, глина и подпочвы. Они содержат все необходимые растениям основные питательные элементы, такие как кальций, фосфор, калий, хлор, магний, сера. А также в них находятся микроэлементы: цинк, бор, алюминий, йод, железо, кремний, кобальт, марганец, молибден и т.д. Количество этих элементов и микроэлементов превышает в десятки и сотни раз необходимого для получения хорошо урожая. В минералах не хватает только азота, но это не составляет проблему, поскольку азот в огромном количестве есть в структурной почве.
В почве можно найти полный спектр необходимых элементов и микроэлементов. Нехватка растению какого-либо питательного элемента, тут же отражается во внешнем виде растений, окрасе листвы.
Любой питательный элемент, содержащийся в почве, должен быть растворён в воде. Иначе он находится в неусвояемой растением форме и, в итоге, он растению недоступен. Кроме того, чтобы корни могли поглощать питательные вещества, им необходим кислород. Можно внести много удобрений, но, если в почве окажется мало воздуха (излишняя плотность, избыток влаги, почвенная корка), то весь труд, затраченный на внесение удобрений, будет напрасен. Кроме того, чтобы корни дышали, им необходимы углеводы. Их вырабатывают листья, а жизнь листьев зависит от поглощения корнями воды и питательных веществ. Если листьев мало, или они плохо работают, корни будут плохо поглощать содержащиеся в почве элементы питания. Необходимо помнить об этом взаимовлиянии.
Вот необходимое количество основных элементов для полноценного питания растений из расчёта на одну сотку земли.
Углерод, кислород и водород
Это основные элементы, из которых построены углеводы, белки, жиры и другие органические вещества растений. Углеводы образуются в растениях в процессе фотосинтеза при участии хлорофилла, поглощающего энергию солнечных лучей, которая используется для разложения воды на кислород и водород. Кислород уходит в атмосферу, а водород вступает в реакцию с углекислым газом.
В атмосферном воздухе в среднем содержится по объёму 0,03% углекислоты. Количество её в приземном слое воздуха пополняется в частности за счёт поступления из почвы при разложении органических веществ.
Азот в растениях входит в состав важнейших соединений, общее содержание его в различных культурах очень высокое, но изменяется в широких пределах. Он входит в состав белков и аминокислот.
Азот необходим растению для его активного роста. Нехватка этого элемента особенно заметна весной. Азот способствует активному росту растений. С возрастом поступление азота уменьшается, и при созревании растений происходит значительный отток азотистых веществ из вегетативных органов в семена.
Большая часть азота растений представлена белковыми веществами. Он также является частью таких жизненно важных веществ, как нуклеиновые кислоты, хлорофилл, некоторых ростовых веществ (гетероауксин) и витамины группы В.
В неблагоприятных условиях питания, в частности, при нехватке калия, а также при недостаточном освещении, возрастает количество небелковых азотных соединений, таких как нитраты. Но они могут быть и результатом применения минеральных удобрений с нарушением технологии.
Аммоний в большинстве культур отсутствует, но может накапливаться при очень резких нарушениях обмена веществ и оказывать на растение токсическое действие.
Для получения хорошего урожая азота необходимо до 1,5 кг на сотку.
Роса или осадки дают около 0,2 кг азота.
На бесструктурной почве поступления азота на этом и заканчиваются. Поэтому требуется дополнительно добавлять его в почву. Для этих целей мы сыпем селитру и мочевину.
Структурная же почва, которая накрыта слоем перегнойной мульчи, имеет дополнительные источники получения азота:
- Перегнойный слой охлаждается вдвое быстрее, поэтому росы получается вдвое больше.
- Под перегнойным слоем почва всегда находится во влажном состоянии. Влажный перегной содержит азота в два раза больше, а влажный суглинок в 20 раз больше, чем сухие.
- Структурная почва имеет каналы и полости, где днём оседает подземная роса, которая даёт воды вдвое больше, чем дают природные осадки. Это даёт до 0,6 кг азота.
- Обилие микроорганизмов и достаточная влага под мульчей позволяет активно накапливать азот микробами, идёт активная нитрификация. Это даёт до 15 кг азота на сотку, когда надо всего 1,5 кг на сотку.
Калий
Калий необходим для поддержания активности растительных клеток. Калий играет важную роль в синтезе и обновлении белка в растениях. Он отвечает за процесс всасывания, биосинтеза и транспортировки питательных элементов во все части растения. Этот элемент требуется растению постоянно и в больших количествах. Калий стимулирует работоспособность защитных механизмов растения, повышает устойчивость растения к болезням, способствует усилению такого свойства, как засухоустойчивость и холодоустойчивость растения. Улучшает вкусовые качества, цвет и форму овощей. Препятствует полеганию злаковых культур.
При недостатке калия в растениях нарушается процессы обмена веществ и пищеварения, превращения и передвижения углеводов. Новый синтез белка резка снижается при одновременном распаде старых молекул белка.
Попытки заменить калий близкими ему по свойствам элементы, например, натрием и литием, оказались безуспешными.
Потребность в нём растения пропорционально интенсивности роста самого растения. Наиболее интенсивно калий поступает в растения в первые фазы их развития. Поэтому наиболее обильным оно должно быть весной, когда растения растут наиболее интенсивно.
По мере старения отдельных органов растения, происходит отток калия в точки наиболее интенсивного роста.
Калия нужно около 1 кг на сотку. В разных почвах его содержится 3 – 19 кг.
Фосфор
Фосфор входит в состав нуклеиновых кислот, нуклеопротеидов, ряда ферментов, витаминов и других веществ.
Универсальным веществом, участвующим в обмене веществ и накопления энергии во всех организмах является аденозинтрифосфорная кислота (АТФ).
В растениях фосфор находится главным образом в семенах. Больше всего в семенах масличных культур. Фосфор повышает усвоение азота, калия и магния.
Фосфор усиливает способность растений противостоять природным катаклизмам. Он помогает комфортному состоянию растения зимой и отвечает за морозоустойчивость. Он отвечает за развитие корневой системы, за рост всех частей растения. Фосфор способствует прорастанию семян, стимулирует формирование корней и отвечает за рост растения на ранних стадиях развития. Замечено, что растение получает около 50% от всего необходимого растению элемента, когда его рост составляет всего 20% от всего роста растения. А это означает, что фосфору нужно особое внимание уделить при выращивании рассады. Нехватка фосфора в юном возрасте растения, практически невозможно восполнить впоследствии, даже, если впоследствии рассаду пересаживают в очень плодородную почву с достаточным количеством фосфора.
Фосфора требуется до 0,5 кг на сотку. В почвах содержится 30 – 80 кг фосфатов.
Кальций
Кальций присутствует практически во всех клетках растения и стабилизирует их функциональность. Кальций – важный элемент в процессе роста растения и в работе корневой системы. Он улучшает растворимость многих соединений, делая их усвояемыми для растений. Кальций нейтрализует и переводит в безвредное вещество щавелевую кислоту, образующуюся в процессе обмена веществ растений. Пектиновая соль кальция входит в состав вещества, связывающего между собой отдельные клетки.
Кальция необходимо до 2,5 кг на сотку. В почвах содержится 20 – 200 кг.
Другие элементы также содержаться в почвах в больших количествах.
Магний
Магний входит в состав хлорофилла и является обязательным элементом в течение процесса фотосинтеза. Он активизирует ферменты, участвующие в обмене веществ и стимулирует прорастание семян, закладку ростовых почек, а также другую репродуктивную деятельность. Магний содержится в запасном фосфорорганическом веществе – фитине, накапливающемся в семенах.
Недостаток магния чаще наблюдается на лёгких кислых почвах.
Железо
Этот элемент является незаменимой частью окислительно-восстановительных процессов. Он является составной частью дыхательных ферментов и отвечает за нормальное дыхание растений. Нарушение дыхания растений приводит к замедлению роста растения и снижению урожайности. Железо часто является катализатором для образования хлорофилла.
Марганец
Марганец, как и медь, входит в состав ряда ферментов, регулирующих окислительно-восстановительные процессы в растениях. Этот элемент необходим для продуктивного течения процессов фотосинтеза, а также синтеза белков и др.
При недостатке марганца резко снижается содержание хлорофилла. Дефицит этого элемента проявляется в слабой молодой поросли, а сильная нехватка приводит к тому, что она становится нежизнеспособной.
Однако избыток марганца, что так часто бывает на кислых почвах, также вреден для растений.
Цинк участвует в образовании ряда ферментов и его значение в обмене веществ очень велико. Он необходим для процесса оплодотворения растений и развития зародыша в плодах. Цинк влияет на образование хлорофилла и ростовые вещества, являясь катализатором роста растения. Он присутствует при фотохимическом расщеплении воды. Цинк необходим для образования ауксинов, которые способствуют удлинению стеблей и являются органическими стимуляторами роста растений.
Нехватка цинка становится заметным в конце периода вегетации и чаще всего проявляется на плодовых деревьях, кукурузе, сое, винограде.
Медь входит в состав окислительных ферментов и играет очень важную роль в обмене веществ растений. Этот элемент способствует активации таких важных процессов, как дыхание растения, белковые и углеводные обмены.
Дефицит этого элемента проявляется в засыхании верхушечных побегов. Медь в растениях локализована в хлоропластах, при её недостатке, разрушается хлорофилл, и растения страдают от хлороза.
Бор стимулирует синтез аминокислот, белков и углеводов, присутствует во многих ферментах, регулирующих обмен. Он оказывает воздействие на процессы цветения и плодоношения, на прорастание пыльцы и деление клеток. Бор усиливает развитие репродуктивных органов, предотвращает опадение завязей. Он участвует в азотном и углеводном обменах. Бор воздействует на активность поглощения солей, на деятельность гормонов, на метаболизм пектиновых веществ. Он способствует лучшему развитию проводящих сосудов, влияет на деятельность некоторых ферментов и регуляторов роста.
Сера является непременной составной частью растительных белков, некоторых аминокислот, витаминов, горчичных и чесночных масел. Участвует в белковом обмене, участвует в различных реакциях окисления и восстановления во многих реакциях в растениях.
Серы требуется до 0,5 кг на сотку.
Молибден
Молибден входит в состав фермента, катализирующего восстановление нитратов в растениях. Его роль важна в процессах, связанных с превращением одних форм азота в другие. Он находится в составе ферментов, которые превращают нитраты в аммиак, используемый для построения белков. Важную роль молибден играет в фиксации атмосферного азота в клубеньках бобовых.
При недостатке молибдена, может возникнуть нарушение азотного обмена, что может привести к накапливанию нитратов в растении.
Кобальт
Кобальт участвует в процессах фиксации атмосферного азота.
Потребность растений в том или ином элементе питания неодинакова. Одним растениям, например, корнеплодам калия нужно больше, чем другим. Такие растения, как капуста, огурец потребляют больше азота, а сахарная свёкла уважает натрий, горох, соя и другие бобовые предпочитают кобальт.
Если мы добавляем какие-либо элементы в почву, то они, как правило, находятся в неусвояемой растениями форме. Для того, чтобы питательные элементы усваивались растениями, они должны перейти в растворённое состояние. Этот раствор получается под действием кислот, таких как угольная и гуминовая кислоты. Эти кислоты производятся почвенными микроорганизмами при наличии в почве влаги, воздуха и органики.
Мы подробно рассмотрели как, чем и в каких количествах питаются растения. Если у вас возникли вопросы или вы хотите что-то обсудить, то обязательно оставьте свой комментарий.
Читайте также: