Как устроен жк дисплей телевизора
Телевизоры с жидкокристаллическим (LCD) экраном уже давно являются самыми популярными. Даже после выхода дисплеев, матрица в которых лучше (QLED, OLED), многие предпочитают ЖК. Причина кроется не только в том, что такие ТВ дешевле, но и в хорошем качестве изображения.
Экраны с технологией жидких кристаллов используются в смартфонах, планшетах, умных часах, калькуляторах, автомобилях, термометрах и в других устройствах. Наибольшее применение технология получила в телевизорах.
Именно с появлением дисплеев с жидкокристаллической базой телевизоры смогли стать значительно тоньше и легче, чем “толстяки” прошлых лет. Поэтому с ЖК явно стоит познакомиться поближе!
Технология жидких кристаллов
Во всех экранах с жидкокристаллической технологией применяется скрученный тип кристаллов, которые расположены между собой по витой схеме. Данный тип кристаллов очень чувствителен к электрическому току, поэтому от мощности подаваемого на них напряжения зависит, как они будут “раскручиваться”.
Такая чувствительность напоминает колебания жидкости при малейшем взаимодействии, поэтому и называются кристаллы жидкими. Но если рассматривать вопрос с научной точки зрения, то кристаллы не жидкие. Скорее, очень эластичные и подверженные изменениям.
Как работает ЖК на телевизорах
Главный принцип функционирования ЖК панелей на телевизорах основывается на количестве пропускаемого света. Раствор, состоящий из жидких кристаллов, помещается между двумя пластинами, которые расположены параллельно друг к другу.
Пластинами являются поляризованные стекла, с помощью которых можно изменять количество света, попадающего на матрицу. Напряжение тока, которое поступает к кристаллам, влияет на их раскрываемость, а значит и пропускную способность к второй стеклянной панели.
Из-за этого на экране отображается только то количество света, которое необходимо для отображения изображения Грубо говоря, на дисплеях с жидкокристаллической матрицей регулируется лишь яркость света, которая в конечном итоге отображается соответствующим цветом на экране.
Сама матрица из жидких кристаллов состоит из огромного количества пикселей, число которых отображается в виде разрешения экрана. Через эти пиксели свет либо проходит, либо нет, что в итоге формирует изображение.
Теперь про формирование цвета.
Изначально на пиксели в ЖК дисплеях светит лампа, и если все кристаллы скручены максимально, то виден белый свет, испускаемый лампой. Но в каждом пикселе есть разделение на 3 части: красная, зеленая и синяя часть.
В зависимости от количества пропускаемого света, которое регулируется жидкими кристаллами (а они регулируются подаваемым напряжением), подсвечиваются определенные части с разной силой. По принципу работы это похоже на смешивание красок. И так как из формата RGB (red, green blue) можно получить любой цвет, это приводит к отображению любого цветного изображения.
После разбора ЖК панели по частям, принцип работы экрана не кажется таким сложным. Производить эти дисплеи тоже довольно просто (при массовом производстве), поэтому я думаю, что ЖК будет популярным еще несколько лет!
LCD (Liquid crystal display) или ЖК (жидкокристаллический) телевизор, как их называют в народе - это телевизор с ЖК дисплеем и ламповой подсветкой. Жидкокристаллический, означает, что сам дисплей (монитор) сделан на основе жидких кристаллов
LCD TFT (англ. Thin film transistor — тонкоплёночный транзистор) - разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель для каждого субпикселя (элемента матрицы) применяется для повышения быстродействия, контрастности и чёткости изображения дисплея
Жидкие кристаллы впервые были обнаружены австрийским ботаником Райнитцером в 1888 г., но только в 1930-м году исследователи из британской корпорации Marconi получили патент на их промышленное применение, однако, слабость технологической базы не позволяла в то время активно развивать это направление.
Первый настоящий прорыв совершили ученые Фергесон и Вильямс из американской корпорации RCA. Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 г., корпорация RCA продемонстрировала прототип LCD-монитора - цифровые часы. Первый в мире калькулятор - CS10A был произведен в 1964 году корпорацией Sharp, она же, в октябре 1975 года, выпустила первые компактные цифровые часы с ЖК дисплеем. К сожалению, фоток не нашёл, а вот эти часы и калькулятор - ещё помнят многие
Во второй половине 70-х начался переход от восьмисегментных ЖК индикаторов к производству матриц с адресацией (возможностью управления) каждой точки. Так, в 1976 году, компания Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.
Следующий этап в развитии LCD-технологии начался в 80-х годах, когда в устройствах стали применяться STN-элементы с повышенной контрастностью. Затем на смену им пришли многослойные структуры, позволяющие устранить ошибки при воспроизведении цветного изображения. Примерно тогда же появились активные матрицы на базе технологии a-Si TFT. Первый прототип монитора a-Si TFT LCD был создан в 1982 году корпорациями Sanyo, Toshiba и Cannon, ну а мы, в это время, любили играться вот такими игрушками с ЖК дисплеем
Сейчас ЖК дисплеи практически полностью вытеснили с рынка кинескопные телевизоры, предлагая покупателю любые размеры: от переносных и небольших "кухонных", до огромных, с диагоналями более метра. Ценовой диапазон так же весьма велик и позволяет каждому подобрать телевизор по своим потребностям и финансовым возможностям
Схемотехника LCD телевизоров гораздо сложнее, чем у простых кинескопных ТВ: миниатюрные детали, многослойные платы, дорогостоящие блоки. Вот, кому интересно, телевизор с ЖК панелью без задней крышки, а если снять специальные защитные экраны, можно будет увидеть другие участки схемы, только лучше этого не делать, оставьте это мастерам
Работа ЖК дисплея (ЖКД) основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Этот эффект называется поляризацией света.
Если совсем по простому, представьте "свет" в виде маленьких круглых шариков, если на его пути поставить сетку с продольными вырезами (поляризатор), то, после неё, из "шариков" останутся только плоские "блинчики" (поляризованный свет). Теперь, если вторая сетка будет с такими же продольными вырезами, блинчики смогут "проскочить" через неё и "светить" дальше, если же вторая сетка будет иметь вертикальные прорези, то световые горизонтальные "блинчики" не смогут пройти сквозь неё и "застрянут"
Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами
Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости.
Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.
Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной, хотя уроверь потерь - немалый.
Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры, степенью прозрачности можно управлять, изменяя приложенное напряжение.
В качестве источника света (подсветки ЖК-матрицы) используются флуоресцентные лампы с холодным катодом (называются они так, потому что катод, испускающий электроны (отрицательный электрод) внутри лампы необязательно нагревать выше окружающей температуры, чтобы лампочка зажглась). Вот так может выглядеть лампа для LCD телевизора, на правом фото - "ламповая сборка в работе" для телевизора с большой диагональю ЖК-дисплея:
Сами лампы (белого яркого свечения) располагаются в специальных корпусных фиксаторах, позади их - отражатель, для уменьшения потерь светового потока. Для того, чтобы ЖК-матрица засветилась равномерно (а не полосато, как лампы установлены ), перед экраном находится рассеиватель, который равномерно распределяет световой поток по всей своей площади. К сожалению, в этом месте так же происходит немалая потеря "яркости" свечения ламп
Современные ЖК-матрицы имеют достаточно хороший угол обзора (около 160 градусов) без потери качества изображения (красок, яркости), самое неприятное, что на них можно увидеть - это вот такие битые пиксели, однако, учитывая то, что их размер очень мал, один-два таких "прогоревших" пикселя не сильно будут мешать просмотру фильмов и передач, а вот на экране монитора - это уже может быть достаточно неприятно
По сравнению с кинескопными телевизорами, ЖК-панели имеют отличную фокусировку и чёткость, нет ошибок сведения лучей или нарушения геометрии изображения, экран никогда не мерцает, они легче и занимают меньше места К минусам можно отнести слабоватую (по сравнению с кинескопными) яркость и контрастность, матрица не такая прочная, как экран кинескопа, набор цифровых тормозов и глюков при аналоговом или слабом сигнале, а так же плохой обработке исходного материала
Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками
Основной элемент LCD-панели или попросту монитора – жидкокристаллическая матрица, представляющая собой законченный функциональный модуль с набором входных сигналов, определяемых его архитектурой. Поэтому все образцы этих устройств построены примерно одинаково, а их проверка и ремонт проводятся в виде стандартных процедур.
Устройство и порядок работы
Матрица представляет собой комбинацию большого числа жидких кристаллических ячеек, располагающихся системно. Характерным для нее является то, что положение каждого из этих элементов описывается двумя координатами: номерами строк и столбцов.
С другой стороны, в ее конструкции предусмотрены следующие модули (смотрите фото ниже):
- Рабочий интерфейс LVDS.
- Микроконтроллер TCON.
- Плата управления (ПУ) питающими напряжениями.
- Модуль задней подсветки (инвертор).
Обратите внимание: Последний компонент имеется не у всех моделей LCD-панелей.
Первый из модулей (интерфейс LVDS) обеспечивает высокую скорость приема данных и существенное снижение линейных помех. Благодаря этому узлу панель приобретает универсальные свойства, позволяющие эксплуатировать ее с любой управляющей платой, имеющей аналогичный интерфейс.
При его использовании информация на ЖК-панель передается в последовательном виде – поэтому в ее составе предусмотрен специальный чип, преобразующий данные в параллельный код. Он представляет собой интегральную микросхему, выполняющую функцию приемника. Далее данные в параллельном коде поступают на микросхему контроллера TCON.
Вторая составляющая матрицы обеспечивает выполнение следующих операций:
- Управление синхронизацией и приемом данных.
- Распределение ее по драйверам строк и столбцов.
- Выдача управляющих сигналов на выход.
На выходном шлейфе контроллера формируется столько сигналов, сколько необходимо для управления транзисторами, встроенными в панель. Общее их количество определяется разрешением, которое поддерживается данным конкретным образцом матрицы. При разрешении 1600х1200, например, на экране будет 1200 строк и 4800 столбцов (1600х3).
Дополнительная информация: Умножение на 3 означает, что каждый цветной элемент формируется на базе трех располагающихся рядом точек.
В панелях большинства марок используется полосковая топология, называемая Stripe. Пример расположения точек на поверхности матрицы приводится на фото снизу.
Характерные неисправности
К числу основных проблем, чаще всего возникающих при эксплуатации матриц, следует отнести:
- Монитор не включается, а светодиод индикатора питания не светится.
- Слишком низкая или очень высокая яркость картинки.
- Изображение на экране мигает (все или только один край).
- Темный экран (индикатор питания горит).
- Экранная подсветка гаснет через какое-то время.
- Отсутствует один цвет.
Рассмотрим каждую из неисправностей более подробно.
В первом случае, возможно, вышел из строя внутренний источник питания, который можно попробовать отремонтировать. Однако специалисты советуют при наличии возможностей сразу заменить его новым изделием (сделать это можно, если он оформлен как отдельный модуль). В ситуации, когда источник входит в состав управляющей платы – придется полностью обновить этот узел. Причиной этой неполадки также могут быть:
- Выход из строя сетевого адаптера (в моделях, где он имеется).
- Неисправность кнопки включения.
- Неполадки в самой ПУ.
Для устранения этих нарушений сначала нужно проверить «подозрительную» деталь, модуль или плату с помощью тестера (на предмет наличия нужных напряжений и отсутствия обрывов в рабочих цепях). При обнаружении поврежденных узлов или элементов плату, адаптер или кнопку придется заменить.
При выявлении неисправности второго рода (изменился уровень яркости) причину следует искать в нарушениях в работе инвертора, лампочек задней подсветки или ПУ. После проверки импульсных напряжений на выходе инвертора и управляющей платы можно будет убедиться в их состоянии.
Важно! Для получения полной картины с управляющими сигналами удобнее всего воспользоваться цифровым осциллографом.
Если нужные импульсные напряжения на выходе этих узлов отсутствуют – потребуется заменить их исправными. При наличии всех сигналов можно попробовать обновить лампочки подсветки. В ряде моделей следует начинать с проверки соединительного шлейфа между инвертором и ПУ на предмет его целостности.
При мигающем экране неисправными могут быть инвертор или лампа задней подсветки. Для устранения этой неисправности придется проделать все те же операции, что и в предыдущем случае. При обнаружении нарушений в формировании импульсных сигналов или обрыва шлейфа – необходимо заметь эти элементы новыми изделиями. Неисправную лампочку подсветки также потребуется обновить.
При наличии опыта соответствующих работ можно попытаться отремонтировать инвертор своими руками. Однако в этом случае надеяться на положительный результат можно не всегда. Если экран потемнел и ни изменяет свое состояние (фото ниже) – нужно проверить преобразователь в плате ПУ или инвертор.
В первом случае следует убедиться с помощью тестера в наличии напряжений у всех стабилизаторов и при обнаружении нарушений заменить неисправный элемент новой деталью. При выявлении отклонений в работе инвертора проще всего заменить его рабочим аналогом.
Если экран выключается через неопределенное время – нарушение, скорее всего, кроется в срабатывании токовой защиты инвертора. Другой причиной может быть неисправность лампочки задней подсветки. Для решения вопроса в этом случае рекомендуется заменить оба узла.
В ситуации, когда отсутствует один из цветов в изображении – неисправность может скрываться в нарушении работы интерфейса или ПУ. Если их проверка подтвердила эти предположения – вышедшие из строя узлы следует заменить. В заключение отметим, что к самостоятельному ремонту матрицы монитора не следует приступать, если вы полностью не уверены в своих силах.
Нельзя просто взять и выбрать телевизор в 2020 году. Конечно, можно ткнуть пальцем в первую от входа модель в магазине, или первую по списку на онлайн-витрине. Можно положиться на интуицию или мнение второй половинки. Но осознанный выбор всё-таки требует какого-то понимания современных технологий, используемых в производстве телевизоров. Вот эти все непонятные буквосочетания и страшные термины. Так что если вам хоть немного интересно, чем OLED отличается от QLED или UHD от HDR, милости просим в этот путеводитель. Опытным технарям просьба не ворчать на простоту изложения, а смиренно подсунуть этот текст своей бабушке и возблагодарить авторов за сэкономленные нервы при объяснении простых истин.
Давайте начнем с простых вопросов.
Что снаружи, какие сейчас бывают разъёмы и интерфейсы?
- HDMI — сейчас это самый распространенный разъем для подключения телевизора к источникам сигнала: видеокартам компьютеров, ноутбукам или мультимедийным проигрывателям. Может использоваться для работы дополнительных технологий, например:
- HDCP 2.2 (High-bandwidth Digital Content Protection) — не разъем, а протокол защиты цифрового контента, передаваемого по HDMI, актуален для современных 4К-телевизоров.
- HDMI-CEC (он же Easy Link или Anynet) — технология, которая позволяет управлять с одного пульта несколькими устройствами, подключенными через HDMI-кабели.
Ладно, посмотрим теперь, что внутри. Вот что такое разрешение экрана телевизора?
Это не расширение, не путайте два разных понятия. Расширение — у файла, разрешение — у экрана. Так вот, разрешение экрана — это количество точек по вертикали и горизонтали. Изображение на экране телевизора, как и на компьютерном мониторе или на смартфоне, состоит из точек. Чем их больше помещается на экране, тем четче выглядит картинка. Но разрешение есть не только у самого экрана, а и у видеоролика, который на нём отображается. Если смотреть видео низкого разрешения на экране высокой чёткости, результат будет таким, как само видео. Или наоборот, на телевизоре формата HD Ready нет смысла смотреть видео в 4K.
А чем HD Ready отличается от Full HD и 4K?
Количеством точек, из которых состоит изображение. Вообще само буквосочетание HD происходит от слов High Definition, то есть, высокое разрешение. Когда-то в старину разрешение экранов было невысоким, и маркетологи использовали это буквосочетание, чтобы отличить новинки с большим количеством точек. Но разрешение в новых устройствах продолжало расти, и сейчас вы можете встретить много вариаций на тему HD.
- Термин HD Ready (то есть, буквально «готов к HD») — относится к самым недорогим телевизорам, имеющим разрешение 1280х720, 1366х768, 1400х900 или 1680х1050 точек.
- FullHD (или 1080p) — экраны разрешением 1920х1080, до сих пор это, пожалуй, самый популярный формат, некая золотая середина.
- UHD или UltraHD — наиболее современные форматы разрешения. Бывают двух типов: UHD 4K (3840х2160 или 2160p) и UHD 8K (7680x4320, 4320p). Причем второй тип (читается «восемь ка») сейчас, в 2020 году, считается новым, весьма дорогим и пока не очень практически полезным. Телевизоров такого формата на рынке пока мало, а видео, чтобы на нем смотреть — и того меньше. Впрочем, недавно мы и про 4К могли такое сказать, а сегодня снимать его умеют даже смартфоны среднего ценового уровня.
В чем разница между 1080p и 1080i?
В типе развертки. Смотрите: цифра обозначает количество пикселей по вертикали. В формате 1920х1080 их 1080, а в 1280х720 их 720. Поэтому второй из названных форматов также называют 720p. А вот буква «p» происходит от слова «progressive» и означает прогрессивную развертку. Это значит, что все строки, то есть, горизонтальные линии на экране, обновляются при смене кадров одновременно. Вроде бы это звучит логично, и в современных телевизорах это всегда так. Но в старых электронно-лучевых телевизорах применялся другой тип развёртки: чересстрочная (interlaced). При таком способе чётные и нечётные строки точек, из которых состоит изображение, обновляются по очереди. Такой формат видео имеет букву «i» в названии.
Тогда что такое PPI?
Это вообще другое, буквы похожие, но смысл разный. PPI — pixels per inch, количество пикселей на дюйм. Это важная характеристика, которая показывает, насколько густо экран телевизора заполнен пикселями. Ведь кроме разрешения у него есть физический размер. У телевизора с разрешением FullHD и диагональю 32 дюйма пиксельная плотность составит 69 ppi, а у такого же (FullHD), но 40-дюймового плотность будет меньше (55ppi), потому что то же самое количество пикселей растянуто по большей площади экрана.
Сколько нужно PPI в телевизоре?
Если просто, то чем больше, тем лучше. Но телевизоры с высоким ppi стоят дороже и, возможно, вам нет смысла переплачивать ли лишние пиксели. Вот простое правило: чем дальше зритель сидит от телевизора, тем меньшей пиксельной плотности достаточно для визуального качества картинки. С расстояния один метр изображение на экране с 90 ppi будет выглядеть примерно так же, как всего лишь 9 ppi, но с десятиметровой дистанции. Для расстояния в два метра достаточным будет значение в 40 ppi, что примерно соответствует 52-дюймовому FullHD телевизору. Но, конечно, это примерная оценка, все зависит от ваших пожеланий к изображению и особенностей зрения. Для расчета этого параметра в интернете есть специальные калькуляторы ppi, например тут. Вводите разрешение и диагональ, получаете результат и не возитесь с формулами.
PPI, DPI, какая разница?
Не путайте: DPI это dots per inch, точек на дюйм. Точки — это при печати на принтере, а пиксели — это на экране. К телевизорам параметр DPI не имеет отношения.
Хорошо, а вот яркость у телевизора какая должна быть?
Реклама нас уже научила: яркость лучше — максимальная. Если что, её всегда можно отрегулировать в настройках. Измеряется яркость в канделах на квадратный метр (кд/м2), иногда используют устаревшее название «нит», это то же самое. Максимальная яркость зависит от типа экрана. Если в жидкокристаллических панелях она может колебаться в диапазоне 300-600 кд/м2, то для светодиодных экранов достижимы цифры порядка 1500 кд/м2 и даже выше.
С контрастностью так же?
Да, похоже. Причем понятие контрастности связано с яркостью. Значение контрастности, например, 3000:1 (читается «три тысячи к одному»), означает, что в этом телевизоре яркость самого светлого пикселя в 3000 раз больше, чем яркость самого темного. Понятно, что это может быть один и тот же пиксель, который в три тысячи раз ярче, отображая белый цвет, чем он же, показывающий чёрный цвет. В OLED-экранах чёрные пиксели не светятся совсем, то есть, они совершенно чёрные, поэтому их контрастность может считаться бесконечно высокой.
OLED, LED, QLED — чем они отличаются, запутаться же можно!
Запросто можно! Поэтому сперва нужно понять, как вообще работают экраны телевизоров. Я очень быстро, не бойтесь. Про старые трубочные телевизоры сейчас не говорим, будем только о современных «плоских». Их можно поделить на три большие группы.
- Жидкокристаллические (LCD, liquid crystal display). Принцип работы такой. Свет от подсветки проходит через матрицу с жидкими кристаллами, а электроника управляет этой матрицей, пропуская или нет нужное количество света в нужном месте. Так создается изображение на экране. Это наиболее популярный тип экранов, в котором существует множество разновидностей.
- LED-телевизоры. Так называют ЖК-телевизоры, в которых в качестве подсветки используются светодиоды (LED), а не лампы. К этому классу относятся едва ли не все современные ЖК-телевизоры, включая разные типы, описанные ниже. Ещё раз: почти любой телевизор сейчас — LED (но не путать с OLED, о них мы поговорим дальше). А кроме этого он может дополнительно носить и какое-то другое буквосочетание. Например:
- Direct LED — способ подсветки, при котором светодиоды размещены по всей площади экрана. Позволяет гибко управлять подсветкой в разных областях экрана.
- Edge LED — в таких телевизорах светодиодная подсветка размещена только по бокам экрана. Это позволяет делать телевизоры очень тонкими, но ухудшает равномерность подсветки.
- QLED (Quantum LED) — экраны с «квантовыми точками», технология компании Samsung (мы о ней подробно писали). Похожая технология есть и у LG, там она называется NanoCell.
- ULED — название комплекса технологий марки Hisense. Это не отдельный тип матрицы, а набор программных (алгоритмы) и аппаратных (процессор обработки изображения) решений для повышения качества картинки.
Ну как, разобрались с «ледами»?
Да, но есть еще IPS, PVA, MVA, — что это?
Это немного другое, тут речь о разных типах управления матрицей и способов ее производства в LCD-экранах.
- TN и TN+Film — старые «пассивные» типы матриц с малыми углами обзора, в современных телевизорах не используются.
- TFT — «активная» TN-матрица, где каждым пикселем управляет отдельный транзистор.
- SFT, IPS, PLS — дальнейшее развитие этой технологии с улучшенными цветопередачей, яркостью и углами обзора.
- MVA, PVA — современные технологии на базе VA.
Если совсем коротко, то современный выбор зачастую сводится к IPS против MVA, а радикальной разницы для большинства потребителей между ними может и не быть.
Так, а что такое HDR?
Это тоже три буквы, но совершенно из другой области. HDR (High Dynamic Range) — это технология увеличения динамического диапазона. Точнее, общее название всех технологий этого типа. Глаз человека видит окружающий мир со множеством оттенков и нюансов света и тени. Экран телевизора всё портит, картинка на нём гораздо скуднее. Грубо говоря, по сравнению с « обычными » , дисплеи с HDR показывают тёмный предмет более тёмным, светлый — более светлым, а цвета — максимально приближенными к тому, как их видел глаз оператора при съемке видео. Или фантазия режиссера при монтаже. Этой проблемой производители техники занялись всерьез и наплодили множество технологий, увеличивающих динамический диапазон. Подробное описание принципа действия HDR может занять не одну отдельную статью, поэтому для простоты запомните, что вообще дает HDR для видео:
- больше градаций оттенков (технически это называется «глубина цвета», которая измеряется в битах, чем больше, тем лучше);
- больше цветов вообще (говорят: «шире цветовое пространство»);
- больше максимальная яркость (про ниты и канделы мы уже говорили).
Какие бывают виды HDR?
Их много, запутаться легко, хотя все в общем-то решают одну и ту же задачу. Но часто случается так, что один телевизор умеет работать сразу с несколькими видами HDR-контента, это удобно. Итак, вот какие буквосочетания можно встретить на коробках с телевизорами:
- HDR 10 — самый популярный и наиболее широко распространенный стандарт. Обеспечивает 10-битный цвет и поддерживает отображение до 1,07 миллиарда оттенков.
- HDR10+ — обновлённая версия HDR10, поддерживается в телевизорах Samsung и Panasonic, отличается динамическими метаданными (то есть, дополнительной информацией внутри видеофайла, указывающей, как правильно его отображать).
- Dolby Vision — HDR-технология компании Dolby, известной в области качественного звука. С видео у них тоже получается отлично: технология поддерживает не только 10, но и 12-битный цвет (это более 68 миллиардов оттенков), максимальную яркость до 10000 нит и динамические метаданные.
Эту технологию можно встретить в телевизорах Sharp, Phillips, Hisense, Vizio и других марок. - HLG и HLG10 не имеют никакого отношения к бренду LG, эти технологии разработаны телекомпаниями BBC и NHK. Видео такого стандарта не содержит метаданных и совместимо с широким кругом устройств.
- Advanced HDR by Technicolor — общее название для группы технологий, используемой в телевизорах компании Philips. По сути это « авторская трактовка » описанных выше стандартов.
Это базовые технологии HDR, так сказать, « столпы » . На них строятся решения разных производителей телевизоров, зачастую носящие чисто маркетинговый характер. Вот далеко не исчерпывающий список примеров:
- Samsung: QHDR и Quantum HDR,
- LG: Cinema HDR и HDR Pro,
- Hisense: HDR Supreme,
- Philips: HDR Plus, Perfect и Premium.
И что, с такими телевизорами любое видео будет в HDR?
Нет, видео тоже должно быть « специальное » , в соответствующем HDR-формате. А телевизор должен уметь этот формат правильно отображать, чтобы результат отличался от « обычного » видео.
Так а где же смотреть HDR видео?
Такое видео научились показывать многие стриминговые сервисы и онлайн-кинотеатры: Netflix, Amazon Prime, Megogo, Ivi, Okko. Кроме того, на HDR-телевизоре можно поиграть в HDR-игры на приставках PS4 или Xbox One S.
Хорошо, а какие еще есть технологии улучшения видео и звука в телевизорах?
Их множество, и постоянно появляется что-то новое. Вот вам несколько штук навскидку:
- Wide Color Gamut (WCG) — своего рода предшественник HDR в телевизорах, технология программного увеличения цветности картинки.
- Local Dimming — функция локального затемнения экрана, делает чёрный цвет более насыщенным в определенных участках изображения.
- Depth Enhancer — технология автоматической настройки динамической контрастности.
- UHD Upscaling — «умное» растягивание (то есть, увеличение разрешения) HD-видео на UHD-телевизорах.
- Dolby Atmos — технология многоканального объемного звучания. Позволяет создавать эффект звука, исходящего из разных источников вокруг слушателя, важная функция для создания продвинутого домашнего кинотеатра.
- NICAM — это тоже про звук, но всего лишь стерео. Такая технология кодирования позволяет получить качественный звук даже при слабом уровне эфирного сигнала
Hisense — компания, работающая на рынке с 1969 года и являющаяся лидером продаж телевизоров в Китае и Южной Африке. Hisense сегодня — это 12 исследовательских центров и 14 заводов по производству, расположенных по всему миру. Строгий процесс повышения качества, приверженность к превосходному послепродажному обслуживанию клиентов — все это делается исключительно для того, чтобы вы были уверены, что продукт Hisense — это правильный выбор для вашего дома.
В 2020 году Hisense представляет на украинском рынке телевизоры, работающие на собственной SmartTV-платформе VIDAA, созданной для того, чтобы все современные возможности телевизоров были простыми и понятными для пользователя (доступ к любому приложению в 1-3 клика). VIDAA U4.0 AI отличается удобным и дружелюбным к пользователю интерфейсом, поддержкой современных технологий, включая голосовой поиск и интс глобальными и украинскими провайдерами видеоконтента:
Новинки 2020 года: телевизоры Hisense 65U8QF и Hisense 43A7500F обладают конкурентноспособной ценой и предлагают украинским покупателям безупречное качество и современные технологии телевизоров по доступной цене:
Hisense 65U8QF
65-дюймовый 4К-телевизор с ULED-экраном
Флагманская модель телевизоров Hisense с ULED-экраном на квантовых точках, обеспечивающим яркость 1000 нит. Антибликовый экран с частотой 120 Гц, локальное затемнение из 180 зон, AI-масштабирование изображения в 4К, поддержка технологий Dolby Vision и Dolby Atmos. За звук отвечают фронтальные динамики JBL. Все вместе делает этот телевизор современным и достойным внимания самых требовательных покупателей.
лучшее изображениеHisense 43A7500F
43-дюймовый 4К-телевизор с прекрасным соотношением цены и возможностей
Этот 43-дюймовый SmartTV-телевизор поддерживает разрешение 4К и использует фирменную технологию Hisense UHD AI Upscaler позволяющую преобразовать изображение в UltraHD-качество. Поддерживается технология Dolby Vision обеспечивающая расширенный динамический диапазон. Есть интеллектуальное распознавание сцен и автоматическая корректировка изображения. Акустическая система телевизора работает с DTS Virtual: X, что гарантирует лучший в своем классе звук.
выгодная покупкаПодписывайтесь на наш нескучный канал в Telegram, чтобы ничего не пропустить.
Читайте также: