Как сделать звездчатый октаэдр
Звёздчатый многогранник (звёздчатое тело) — это невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников, грани попарно соединяются в ребрах, при этом внутренние линии пересечения не считаются рёбрами.
Звёздчатой формой многогранника называется многогранник, полученный путём продления граней данного многогранника через рёбра до их следующего пересечения с другими гранями по новым рёбрам.
Правильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются одинаковые правильные или звёздчатые многоугольники. Коши установил, что существует всего 4 правильных звёздчатых тела, не являющиеся соединениями платоновых и звёздчатых тел, называемые телами Кепплера — Пуансо: все 3 звёздчатых формы додекаэдра и одна из звёздчатых форм икосаэдра. Остальные правильные звёздчатые многогранники являются или соединениями платоновых тел, или соединениями тел Кепплера — Пуансо.
На данных рисунках каждая грань для красоты и наглядности окрашена собственным цветом.
Многие формы звёздчатых многогранников подсказывает сама природа. Например, снежинки — это плоские проекции звёздчатых многогранников. Некоторые молекулы имеют правильные структуры объёмных фигур.
Содержание
Тетраэдр и куб
Тетраэдр и гексаэдр (куб) не имеют звёздчатых форм, так как их грани при продлении через рёбра более не пересекаются.
Звёздчатый октаэдр
Звёздчатые формы додекаэдра
Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр (звёздчатый большой додекаэдр, завершающая форма). Первые две из них были открыты Кеплером (1619), третья — Пуансо (1809). В отличие от октаэдра любая из звёздчатых форм додекаэдра не является соединением платоновых тел, а образует новый многогранник.
Все 3 звёздчатые формы додекаэдра, вместе с большим икосаэдром образуют семейство тел Кеплера-Пуансо, то есть правильных невыпуклых (звёздчатых) многогранников.
У большого додекаэдра гранями являются пятиугольники, которые, сходятся по пять в каждой из вершин. У малого звёздчатого и большого звёздчатого додекаэдров грани - пятиконечные звёзды (пентаграммы), которые в первом случае сходятся по 5, а во втором по 3.
Вершины большого звёздчатого додекаэдра совпадают с вершинами описанного додекаэдра. У каждой вершины соединяются три грани.
Звёздчатые формы икосаэдра
Икосаэдр имеет 59 звёздчатых форм, из которых 32 обладают полной, а 27 неполной икосаэдральной симметрией, что было доказано Кокстером совместно с Дювалем, Флэзером и Петри c применением правил ограничения, установленных Дж. Миллером. Одна из этих звёздчатых форм (20-я, мод. 41 по Веннинджеру), называемая большим икосаэдром (см. рис), является одним из четырёх правильных звёздчатых многогранников Кеплера—Пуансо. Его гранями являются правильные треугольники, которые сходятся в каждой вершине по пять; это свойство является у большого икосаэдра общим с икосаэдром.
Среди звёздчатых форм также имеются: соединение пяти октаэдров, соединение пяти тетраэдров, соединение десяти тетраэдров.
Если каждую из них продолжить неограниченно, то тело будет окружено большим многообразием отсеков — частей пространства, ограниченных плоскостями граней. Все звёздчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+ 12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр состоит из всех этих кусков, за исключением последних шестидесяти. Следующая звёздчатая форма - завершающая.
Звёздчатые формы кубооктаэдра
Кубооктаэдр имеет 4 звёздчатые формы, удовлетворяющие ограничениям, введённым Миллером. Первая из них является соединением куба и октаэдра.
Звёздчатые формы икосододекаэдра
Икосододекаэдр имеет множество звёздчатых форм, первая из которых есть соединение икосаэдра и додекаэдра.
Икосододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильные треугольники. Что касается вопроса о том, могут ли получившиеся многогранники оказаться правильными, то на него давно получен ответ. Великий математик Коши ещё в 1811 году доказал, что список правильных многогранников исчерпывается пятью платоновыми телами вкупе с четырьмя многогранниками Кеплера — Пуансо.
Искусство оригами пришло к нам из Древнего Китая. На заре своего развития из бумаги мастерили фигурки животных и птиц. Но сегодня можно создавать не только их, но и сложные геометрические фигуры.
Для производства объемной геометрической фигуры октаэдр необходим квадратный лист бумаги. Сделать его можно из обычного листа формата А4. Для этого верхний правый или левый угол листа согните к противолежащей стороне. Сделайте пометку на листе бумаги. Прочертите линию параллельно узкой стороне листа по сделанной отметке. Отрежьте ненужный кусок бумаги. Согните квадрат пополам.
Приложите правый верхний угол к центральному сгибу. Совместите левый верхний угол так, чтобы линия сгиба прошла через приложенный правый верхний угол.
Согните левый нижний угол квадрата к средней линии. Совместив правый нижний угол аналогично верхним углам, сделайте сгиб. После чего заготовку необходимо перевернуть.
Сложите правый нижний уголок детали и верхний левый к центральному сгибу. Прогладьте заготовку рукой и переверните на другую сторону.
Звёздчатый многогранник (звёздчатое тело) - это невыпуклый многогранник, грани которого пересекаются между собой.
Звёздчатой формой многогранника называется многогранник, полученный путем продления граней данного многогранника через ребра до их следующего пересечения с другими гранями по новым рёбрам.
Правильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются одинаковые правильные или звёздчатые многоугольники. Коши установил, что существует всего 4 правильных звёздчатых тела, не являющиеся соединениями платоновых и звёздчатых тел, называемые телами Кепплера — Пуансо: все 3 звёздчатых формы додекаэдра и одна из звёздчатых форм икосаэдра.Остальные правильные звёздчатые многогранники являются или соединениями платоновых тел, или соединениями тел Кепплера — Пуансо.
Тела Кеплера-Пуансо (звездчатые правильные многогранники)
Малый звездчатый додекаэдр
Большой звездчатый додекаэдр
Правильные многогранники с древних времен привлекали внимание философов, строителей, архитекторов, художников, математиков. Их поражала красота, совершенство, гармония этих фигур.
Тетраэдр и гексаэдр (куб) не имеют звёздчатых форм, так как их грани при продлении через рёбра более непересекаются.
Звёздчатый октаэдр
Звёздчатые формы додекаэдра
Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большойдодекаэдр, большой звёздчатый додекаэдр (звёздчатый большой додекаэдр, завершающая форма). Первые две из них были открыты Кеплером (1619), третья — Пуансо (1809). В отличие от октаэдра любая из звёздчатых форм додекаэдра не является соединением платоновых тел, а образует новый многогранник.
Все 3 звёздчатые формы додекаэдра, вместе с большим икосаэдром образуют семейство тел Кеплера-Пуансо, то есть правильных невыпуклых (звёздчатых) многогранников.
У большого додекаэдра гранями являются пятиугольники, которые, сходятся по пять в каждой из вершин. У малого звёздчатого и большого звёздчатого додекаэдров грани - пятиконечные звёзды (пентаграммы), которые в первом случае сходятся по 5, а во втором по 3.
Вершины большого звёздчатого додекаэдра совпадают с вершинами описанного додекаэдра. У каждойвершины соединяются три грани.
Звёздчатые формы икосаэдра
Икосаэдр имеет 59 звёздчатых форм, из которых 32 обладают полной, а 27 неполной икосаэдральной симметрией, что было доказано Кокстером совместно с Дювалем, Флэзером и Петри c применением правил ограничения, установленных Дж. Миллером. Одна из этих звёздчатых форм (20-я, мод. 41 по Веннинджеру), называемая большим икосаэдром, является одним из четырёх правильных звёздчатых многогранников Кеплера—Пуансо. Его гранями являются правильные треугольники, которые сходятся в каждой вершине по пять; это свойство является у большого икосаэдра общим с икосаэдром.
Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено большим многообразием отсеков — частей пространства, ограниченных плоскостями граней. Все звёздчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр состоит из всех этих кусков, за исключением последних шестидесяти.
В геометрии есть несколько замечательных теорем классификации — теорем, сводящих разнообразие некоторых объектов к конечному набору базовых. Мы начинаем серию материалов, посвященных этим теоремам. Первой в нашем списке идет не самая популярная теорема, известная как теорема Кеплера-Пуансо. Она посвящена так называемым звездчатым многогранникам.
Прежде чем говорить о телах Кеплера-Пуансо, следует обсудить понятие правильного звездчатого многоугольника. Обычным правильным многоугольником называют многоугольник, то есть замкнутую ломаную без самопересечений, у которой равны все звенья и все углы. Легко показать, что правильные многоугольники могут быть только выпуклыми.
Возьмем теперь для примера правильный пятиугольник и продолжим его стороны до следующего пересечения между собой. Получится пятиконечная звезда. Такая звезда — это ломаная с самопересечениями, звенья которой равны между собой, равно как и углы (в данном случае углами ломаной будут только углы при вершинах лучей — углы внутри не учитываются).
Иллюстрация: Perspectiva Corporum Regularium - Wenzel Jamnitzer 1568
Теперь возьмем правильный шестиугольник и продолжим его стороны. В результате получится гексаграмма, она же звезда Давида. В отличие от пятиконечной звезды она состоит не из одной ломаной, а из двух, правильных треугольников.
На основании этих двух примеров можно дать такое определение правильного звездчатого многоугольника: одна или более ломаных, возможно с самопересечениями, у которых равны все звенья и углы, а вершины расположены в вершинах правильного многоугольника. Если ломаная одна, то звездчатый многоугольник называется простым, если несколько — составным.
Пять правильных платоновых тел
Иллюстрация: Perspectiva Corporum Regularium - Wenzel Jamnitzer 1568
Один и тот же многоугольник может давать несколько звездчатых многоугольников. Например, стороны семиугольника можно продолжать до следующего после первоначального их пересечения друг с другом, а можно до через одного. Это соответствует двум разным звездам: одну можно получить, соединяя вершины правильного семиугольника через одну вершину, а вторую — через две. Оба звездчатых многоугольника в этом случае, кстати, простые.
Читайте также: