Как сделать уравнение зависимости
Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.
Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.
Составим таблицу перемещений за первые 4 секунды:
Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: \begin x=x_0+s=x_0+vt\\ x=20+10t \end
Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:
В этом случае координата x в любой момент времени t имеет вид: \begin x=x_0-st=x_0-vt\\ x=20-10t \end Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.
п.2. Уравнение прямолинейного равномерного движения
Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.
- если направление вектора \(\overrightarrow\) совпадает с направлением оси OX, то \(v_x=v\gt 0\)
- если направление вектора \(\overrightarrow\) противоположно направлению оси OX, то \(v_x=-v\lt 0\)
В любой момент времени t координата тела x(t) при прямолинейном равномерном движении описывается уравнением: $$ x(t)=x_0+v_x t $$ где \(x_0\) - координата в начальный момент времени, \(v_x\) - проекция вектора скорости движения.
- если \(\triangle x\gt 0\), перемещение \(\overrightarrow\) произошло в направлении оси OX;
- если \(\triangle x\lt 0\), перемещение \(\overrightarrow\) произошло противоположно направлению оси OX.
п.3. Удобная система отсчета для решения задачи о прямолинейном движении
При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.
При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.
Прямолинейное движение описывается с помощью координатной прямой, параллельной направлению движения тела.
Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.
п.4. График движения x=x(t)
Сравним полученное уравнение движения \(x(t)=x_0+v_x t\) с уравнением прямой \(y(x)=kx+b\) (см. §38 справочника по алгебре для 7 класса).
В уравнении движения роль углового коэффициента \(k\) играет проекция скорости \(v_x\), а роль свободного члена \(b\) – начальная координата \(x_0\).
- возрастает, если \(v_x\gt 0\)
- убывает, если \(v_x\lt 0\)
- постоянна (параллельна оси \(t\)), если \(v_x= 0\)
п.5. Как найти уравнение движения по графику движения?
Шаг 1. Выбрать на прямой любые две точки \(A(t_1,x_1)\) и \(B(t_2,x_2)\).
Шаг 2. Найти проекцию скорости как отношение: $$ v_x=\frac=\frac $$ Шаг 3. Найти начальную координату по одной из формул: $$ x_0=x_1-v_x t_1\ \text\ x_0=x_2-v_x t_2 $$ Шаг 4. Записать найденное уравнение движения: $$ x(t)=x_0+v_x t $$
п.6. График скорости vx=vx(t)
- расположена над осью \(t\), если \(v_x\gt 0\)
- расположена под осью \(t\), если \(v_x\lt 0\)
- совпадает с осью \(t\), если \(v_x=0\)
Внимание!
В отличие от алгебры, в физике масштабы на осях, как правило, разные.
Поэтому обязательно нужно:
1) указывать обозначения и единицы измерения физических величин, которым соответствуют оси графика;
2) подбирать масштабы так, чтобы с графиком было удобно работать.
п.7. Как найти путь и перемещение по графику скорости?
На графике скорости путь , пройденный за промежуток времени \(\triangle t=t_2-t_1\) равен площади прямоугольника , длина которого равна \(\triangle t\), а ширина \(\triangle |v_x|\): $$ s=|v_x|\triangle t $$
Проекция скорости \(v_x\) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ \triangle x=v_x \triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.
На графике скорости проекция перемещения на ось OX за промежуток времени \(\triangle t=t_2-t_1\) равна площади \(v_x\triangle t\), с учетом знака: $$ \triangle x=v_x\triangle t $$
Проекция перемещения может быть как положительной, так и отрицательной или равной 0.
п.8. Задачи
Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите \(x_0=0\) и запишите уравнение движения.
а) Постройте график движения \(x=x(t)\) и найдите с его помощью, сколько пробежит спортсмен за \(t_1=5\ с\), за \(t_2=10\ с\);
б) постройте график скорости \(v=v(t)\) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени \(\triangle t=t_2-t_1\)?
По условию \(x_0=0,\ v_x=8\).
Уравнение движения: \(x=x_0+v_x t=0+8t=8t\)
а) Строим график прямой \(x=8t\) по двум точкам:
По графику находим: \begin x_1=x(5)=8\cdot 5=40\ \text\\ x_2=x(10)=8\cdot 10=80\ \text \end
б) Скорость \(v_x=8\) м/с - постоянная величина, её график:
$$ t_1=5\ с,\ \ t_2=10\ с $$ Пройденный путь за промежуток времени \(\triangle t=t_2-t_1\) равен площади заштрихованного прямоугольника: $$ s=v_x \triangle t=8\cdot (10-5)=40\ \text $$ Ответ: а) 40 м и 80 м; б) 40 м
Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?
б) В начальный момент времени корабль находился на расстоянии \(x_0=20\) тыс.км от астероида.
в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18\cdot 4=92\ (\text) $$
г) Переведем скорость в км/с: $$ 18000\frac>>=\frac>>=\frac>>=5\ \text $$ Ответ:
а) \(x(t)=20+18t\) (\(x\) в тыс.км, \(t\) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с
В этой статье мы рассмотрим линейную функцию, график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.
Линейной функцией называется функция вида
В уравнении функции число , которое мы умножаем на называется коэффициентом наклона.
Например, в уравнении функции ;
в уравнении функции ;
в уравнении функции ;
в уравнении функции .
Графиком линейной функции является прямая линия.
1 . Чтобы построить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.
Например, чтобы построить график функции x+2 " />
, удобно взять и , тогда ординаты эти точек будут равны и .
:
2 . В уравнении функции коэффициент отвечает за наклон графика функции:
Коэффициент отвечает за сдвиг графика вдоль оси :
На рисунке ниже изображены графики функций ; x+3" />
;
Заметим, что во всех этих функциях коэффициент больше нуля, и все графики функций наклонены вправо. Причем, чем больше значение , тем круче идет прямая.
Во всех функциях - и мы видим, что все графики пересекают ось OY в точке (0;3)
Теперь рассмотрим графики функций ; x+3" />
;
На этот раз во всех функциях коэффициент меньше нуля, и все графики функций наклонены влево.
Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)
Рассмотрим графики функций ; ;
Теперь во всех уравнениях функций коэффициенты равны. И мы получили три параллельные прямые.
Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции (b=3) пересекает ось OY в точке (0;3)
График функции (b=0) пересекает ось OY в точке (0;0) - начале координат.
График функции (b=-2) пересекает ось OY в точке (0;-2)
Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции .
Если k 0 , то график функции имеет вид:
Если k>0 и b>0 , то график функции имеет вид:
Если k>0 и b , то график функции имеет вид:
Если k , то график функции имеет вид:
Если k=0 , то функция превращается в функцию и ее график имеет вид:
Ординаты всех точек графика функции равны
Если b=0 , то график функции проходит через начало координат:
Это график прямой пропорциональности.
3 . Отдельно отмечу график уравнения . График этого уравнения представляет собой прямую линию, параллельую оси все точки которой имеют абсциссу .
Например, график уравнения выглядит так:
Внимание! Уравнение не является функцией, так как различным значениям функции соответствует одно и то же значение аргумента, что не соответствует определению функции.
4 . Условие параллельности двух прямых:
График функции +b_1" />
параллелен графику функции +b_2" />
, если
5. Условие перпендикулярности двух прямых:
График функции +b_1" />
перпендикулярен графику функции +b_2" />
, если или " />
6 . Точки пересечения графика функции с осями координат.
С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).
С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда . То есть точка пересечения с осью OX имеет координаты (;0):
Рассмотрим решение задач.
1 . Постройте график функции , если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.
В уравнении функции два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.
а) Из того, что график функции параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид
б) Нам осталось найти b. Известно, что график функции проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:
отсюда b=-10
Таким образом, нам надо построить график функции
Точка А(-3;2) нам известна, возьмем точку B(0;-10)
Поставим эти точки в координатной плоскости и соединим их прямой:
2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).
Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой . То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение и получим систему линейных уравнений.
Вычтем из второго уравнения системы первое, и получим . Подставим значение k в первое уравнение системы, и получим b=-2.
Итак, уравнение прямой .
3 . Постройте график уравнения
Чтобы найти, при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть ОДЗ каждого множителя.
Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:
Построим графики всех уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения :
4 . Постройте график функции , если он перпендикулярен прямой x " />
и проходит через точку М(-1;2)
Мы не будем строить график, только найдем уравнение прямой.
а) Так как график функции , если он перпендикулярен прямой x " />
, следовательно =-1" />
, отсюда . То есть уравнение функции имеет вид
б) Мы знаем, что график функции проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:
+b" />
, отсюда .
Следовательно, наша функция имеет вид: .
Упростим выражение, стоящее в правой части уравнения функции.
Важно! Прежде чем упрощать выражение, найдем его ОДЗ.
Знаменатель дроби не может быть равен нулю, поэтому , .
Тогда наша функция принимает вид:
То есть нам надо построить график функции и выколоть на нем две точки: с абсциссами x=1 и x=-1:
Важно!
Запомните!
Из геометрии вспомним аксиому (утверждение, которое не требует доказательств), что через любые две точки можно провести прямую и притом только одну.
Важно!
Отметим полученные точки на системе координат.
Выполним расчеты и запишем их результаты в таблицу.
Отметим полученные точки на прямоугольной системе координат.
В этому уроке для решения задачи выше вспомним только основные моменты.
Запомните!
Запишем полученные результаты в таблицу.
Запишем полученные результаты в таблицу.
Как проверить, проходит ли график через точку
Рассмотрим другое задание.
Запомните!
Чтобы проверить принадлежность точки графику функции нет необходимости строить график функции.
- Если получится верное равенство, значит, точка принадлежит графику функции.
- Если получится неверное равенство, значит, точка не принадлежит графику функции.
Как найти точки пересечения графика с осями
Теперь найдем координаты точек пересечения графика функции с осями по формуле функции.
Запомните!
Запомните!
Важно!
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат O x y .
Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .
указанная теорема состоит из двух пунктов, докажем каждый из них.
- Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.
Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x - x 0 ) + B ( y - y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .
Полученное уравнение A ( x - x 0 ) + B ( y - y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x - x 0 , y - y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x - x 0 , y - y 0 ) не являлись бы перпендикулярными, и равенство A ( x - x 0 ) + B ( y - y 0 ) = 0 не было бы верным.
Следовательно, уравнение A ( x - x 0 ) + B ( y - y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.
- Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .
Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .
Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x - x 0 , y - y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:
n → , M 0 M → = A ( x - x 0 ) + B ( y - y 0 ) = 0
Перепишем уравнение A x + B y - A x 0 - B y 0 = 0 , определим C : C = - A x 0 - B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .
Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.
Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .
Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.
Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .
Рассмотрим конкретный пример общего уравнения прямой.
Пусть задано уравнение 2 x + 3 y - 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.
Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y - 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.
Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.
Неполное уравнение общей прямой
Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.
Разберем все вариации неполного общего уравнения прямой.
- Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение - C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу - C B .
- Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
- Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
- Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
- Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .
Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.
Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , - 11 . Необходимо записать общее уравнение заданной прямой.
Решение
Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:
Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = - 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x - 2 = 0
Ответ: 7 x - 2 = 0
На чертеже изображена прямая, необходимо записать ее уравнение.
Решение
Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .
Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = - 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y - 3 = 0 .
Ответ: y - 3 = 0 .
Общее уравнение прямой, проходящей через заданную точку плоскости
Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x - x 0 ) + B ( y - y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .
Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.
Даны точка М 0 ( - 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , - 2 ) . Необходимо записать уравнение заданной прямой.
Решение
Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = - 2 , x 0 = - 3 , y 0 = 4 . Тогда:
A ( x - x 0 ) + B ( y - y 0 ) = 0 ⇔ 1 · ( x - ( - 3 ) ) - 2 · y ( y - 4 ) = 0 ⇔ ⇔ x - 2 y + 22 = 0
Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:
A x + B y + C = 0 ⇔ 1 · x - 2 · y + C = 0 ⇔ x - 2 · y + C = 0
Теперь найдем значение С, используя заданную условием задачи точку М 0 ( - 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x - 2 · y + C = 0 , т.е. - 3 - 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x - 2 · y + 11 = 0 .
Ответ: x - 2 · y + 11 = 0 .
Задана прямая 2 3 x - y - 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна - 3 . Необходимо определить ординату заданной точки.
Решение
Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = - 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:
2 3 x 0 - y 0 - 1 2 = 0
Определяем y 0 : 2 3 · ( - 3 ) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2
Ответ: - 5 2
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.
Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x - x 1 a x = y - y 1 a y .
Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = - B y .
Это равенство возможно записать как пропорцию: x + C A - B = y A .
В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = - B y - C . Выносим – В за скобки, тогда: A x = - B y + C B .
Перепишем равенство в виде пропорции: x - B = y + C B A .
Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.
Задано общее уравнение прямой 3 y - 4 = 0 . Необходимо преобразовать его в каноническое уравнение.
Решение
Запишем исходное уравнение как 3 y - 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим - 3 за скобки; получаем: 0 x = - 3 y - 4 3 .
Запишем полученное равенство как пропорцию: x - 3 = y - 4 3 0 . Так, мы получили уравнение канонического вида.
Ответ: x - 3 = y - 4 3 0 .
Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.
Прямая задана уравнением 2 x - 5 y - 1 = 0 . Запишите параметрические уравнения этой прямой.
Решение
Осуществим переход от общего уравнения к каноническому:
2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2
Теперь примем обе части полученного канонического уравнения равными λ , тогда:
x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = - 1 5 + 2 · λ , λ ∈ R
Ответ: x = 5 · λ y = - 1 5 + 2 · λ , λ ∈ R
Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = - A x - C . Разделим обе части полученного равенство на B , отличное от нуля: y = - A B x - C B .
Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.
Решение
Произведем нужные действия по алгоритму:
2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x
Ответ: y = - 2 7 x .
Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :
A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1
Необходимо преобразовать общее уравнение прямой x - 7 y + 1 2 = 0 в уравнение прямой в отрезках.
Решение
Перенесем 1 2 в правую часть: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .
Разделим на -1/2 обе части равенства: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .
Преобразуем далее в необходимый вид: 1 - 1 2 x - 7 - 1 2 y = 1 ⇔ x - 1 2 + y 1 14 = 1 .
Ответ: x - 1 2 + y 1 14 = 1 .
В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.
Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:
x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0
Каноническое уравнение преобразуется к общему по следующей схеме:
x - x 1 a x = y - y 1 a y ⇔ a y · ( x - x 1 ) = a x ( y - y 1 ) ⇔ ⇔ a y x - a x y - a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0
Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ A x + B y + C = 0
Заданы параметрические уравнения прямой x = - 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.
Решение
Осуществим переход от параметрических уравнений к каноническому:
x = - 1 + 2 · λ y = 4 ⇔ x = - 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y - 4 0 ⇔ x + 1 2 = y - 4 0
Перейдем от канонического к общему:
x + 1 2 = y - 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y - 4 ) ⇔ y - 4 = 0
Ответ: y - 4 = 0
Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.
Решение:
Просто перепишем уравнение в необходимом виде:
x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0
Ответ: 1 3 x + 2 y - 1 = 0 .
Составление общего уравнения прямой
Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x - x 0 ) + B ( y - y 0 ) = 0 . Там же мы разобрали соответствующий пример.
Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.
Задана прямая, параллельная прямой 2 x - 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.
Решение
Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , - 3 ) : 2 x - 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:
A ( x - x 0 ) + B ( y - y 0 ) = 0 ⇔ 2 ( x - 4 ) - 3 ( y - 1 ) = 0 ⇔ 2 x - 3 y - 5 = 0
Ответ: 2 x - 3 y - 5 = 0 .
Заданная прямая проходит через начало координат перпендикулярно прямой x - 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.
Решение
Нормальный вектором заданной прямой будет направляющий вектор прямой x - 2 3 = y + 4 5 .
Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:
A ( x - x 0 ) + B ( y - y 0 ) = 0 ⇔ 3 ( x - 0 ) + 5 ( y - 0 ) = 0 ⇔ 3 x + 5 y = 0
Читайте также: