Как сделать уравнение в скобках
В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.
Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.
В простых алгебраических уравнениях переменная находится только на одной стороне уравнения, а вот в более сложных уравнениях переменные могут находиться на обеих сторонах уравнения. Решая такие уравнения, всегда помните, что любая операция, которая выполняется на одной стороне уравнения, должна быть выполнена и на другой стороне. С помощью этого правила переменные можно переносить с одной стороны уравнения на другую, чтобы изолировать их и вычислить их значения.
Овладение детьми способом решения уравнений в начальной школе создает прочную основу для дальнейшего обучения алгебры, химии, физики и других предметов.
Дети уже умеют решать простые уравнения, читай об этом здесь.
А эта статья будет посвящена решению сложных уравнений в 2-3 действия.
Очень часто родители, желая помочь, объясняют так: вот смотри, сейчас вот это число перенести в другую часть от знака равенства, надо поменять знак на противоположный: было умножение, меняем на деление; было сложение меняем на вычитание.
В начальной школе это объяснение не срабатывает, т.к. ребенок не знаком с законами алгебры.
Как сложное уравнение привести к тому, которые мы уже умеем решать, а именно к уравнению в 1 действие?
Рассмотрим уравнение в 2 действия:
х + 56 = 98 — 2 — оно достаточно легкое.
х + 56 = 98 — 2
х + 56 = 96 – это простое уравнение. А его решаем очень быстро!
Сейчас мы рассмотрим уравнение:
Такое уравнение можно решить несколькими способами.
- У нас здесь неизвестное число х. Мы не знаем, что спрятано за этим числом.
А когда к х + 5 – это число тоже известно.
Закроем его и пусть это будет другое число, например b .
Мы видим, что у нас получилось самое простое уравнение в 1 действие.
2 • b = 30
А чтобы найти а, нам нужно 30 : на 2.
А b не что иное, как х + 5.
х + 5 = 30 : 2
х + 5 = 15
х = 15 – 5
х = 10
Проверку делаем как обычно: переписываем первое уравнение: 2 • (10 + 5) = 30.
30 – переписываем, а левую часть считаем — будет 30.
30 = 30, значит, уравнение решили правильно.
При решении таких сложных уравнений самое главное – понять, что заменить на другое неизвестное число. Когда в уравнении всего 2 действия – это очень просто.
- Более удобно и понятно, как показывает практика, если использовать решение сложных уравнений на основе зависимости между компонентами действий.
Наше уравнение 2 • (х + 5) = 30 читаем так: число 2 умножить на сумму х и пяти, получится 30. В данном случае – нам неизвестна сумма, чтобы ее найти, надо 30:2.
48 : (16 – а) = 4.
Если опять заменять часть уравнения другим неизвестным числом, можно запутаться. Поэтому легче использовать взаимосвязи компонентов и результата действия: число 48 разделить на разность.
Нам неизвестна разность, поэтому сначала нужно узнать чему она равна. Надо 48 : 4.
16 — а = 48 : 4
16 — а = 12 – это простое уравнение.
а = 16 — 12
а = 4
Проверка: 48 : (16 — 4) = 4
Давайте посмотрим еще одно:
Из 96 надо вычесть разность с и 16. Чтобы найти разность, надо 96-94.
Проверка: 96 — (16 — 14) = 94
А сейчас мы переходим к тем уравнениям, у которых не 2, а 3 действия. Как же нам поступать в этом случае? При решении таких сложных уравнения используем знания порядка выполнения действий в выражениях со скобками и без них.
Рассмотрим уравнение: 36 – (8 • у + 5) = 7
Прежде всего, нужно внимательно оценить левую часть уравнения: ту, которая с неизвестным числом. Вы должны четко себе представить какое вы будете делать действие первым, какое – вторым, какое – третьим: сначала делается умножение, потом сложение и последним – вычитание.
И вот то, которое вы будете делать третьим, с него и начнем, т.е. начинаем упрощать уравнение с последнего действия. Последнее действие – вычитание. С него и начнем: из числа 36 вычесть то, что в скобках и получим 7.
Значит, то что в скобках – вычитаемое, чтобы его найти, надо 36 — 7.
По правилам математики в данной записи скобки – не ставим.
8 • у + 5 = 29 – уравнение сложное. Нужно его упростить. Данное уравнение читаем так: к произведению 8 и у прибавили 5 и получилось 29. Нам неизвестно произведение, чтобы его найти, надо 29-5.
8 • у = 24 – это уравнение простое.
Проверка: 36 — (8 • у + 5) = 7 . Правую часть – 7 — переписываем, а левую считаем.
Итак: 7 = 7. Значит, уравнение решили правильно.
(36 + d) : 4 + 8 = 18. Определяем порядок действий: первое – сложение в скобках, второе – деление, третье сложение вне скобок. Значит, все, что до 8 – это первое слагаемое, чтобы его найти, надо 18 — 8
(36 + d) : 4 = 18 — 8
(36 + d) : 4 = 10 – уравнение сложное, теперь последнее действие — :, значит
36 + d = 40 – уравнение простое и его мы решаем легко!
Для удобства и быстроты решения сложных уравнений можете пользоваться данной памяткой
Дело в том, что при кажущейся сложности, если внимательно изучить все приемы, которые я вам сегодня показала, эти уравнения дети будете щелкать как семечки. Обязательно напишите в комментариях, какой способ вам более удобен.
В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.
Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?
— такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.
Под простейшим уравнением подразумевается конструкция:
Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:
- Раскрыть скобки, если они есть;
- Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
- Привести подобные слагаемые слева и справа от знака равенства;
- Разделить полученное уравнение на коэффициент при переменной $x$ .
Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:
А теперь давайте посмотрим, как всё это работает на примере реальных задач.
Примеры решения уравнений
Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.
Решаются такие конструкции примерно одинаково:
- Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
- Затем свести подобные
- Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.
Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.
Схема решения простейших линейных уравнений
Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:
Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.
Решаем реальные примеры простых линейных уравнений
Задача №1
На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:
Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:
Вот мы и получили ответ.
Задача №2
\[5\left( x+9 \right)=5x+45\]
В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:
И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:
При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.
Задача №3
Третье линейное уравнение уже интересней:
\[\left( 6-x \right)+\left( 12+x \right)-\left( 3-2x \right)=15\]
Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:
Выполняем второй уже известный нам шаг:
Что необходимо помнить при решении линейных уравнений
Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:
- Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
- Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.
Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.
Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.
Решение сложных линейных уравнений
Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.
Пример №1
\[12-\left( 1-6x \right)x=3x\left( 2x-1 \right)+2x\]
Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:
\[12-\left( x-6x\cdot x \right)=3x\cdot 2x-3x+2x\]
Теперь займемся уединением:
Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:
Пример №2
\[8\left( 2x-1 \right)-5\left( 3x+0,8 \right)=x-4\]
Выполняем те же действия. Первый шаг:
Перенесем все, что с переменной, влево, а без нее — вправо:
Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:
либо корней нет.
Нюансы решения
Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.
\[12-\left( 1-6x \right)x=3x\left( 2x-1 \right)+2x\]
Точно также мы поступаем и со вторым уравнением:
\[8\left( 2x-1 \right)-5\left( 3x+0,8 \right)=x-4\]
Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.
Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.
Решение ещё более сложных линейных уравнений
То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.
Задача №1
\[\left( 7x+1 \right)\left( 3x-1 \right)-21^>=3\]
Давайте перемножим все элементы в первой части:
Давайте выполним уединение:
Выполняем последний шаг:
Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.
Задача №2
\[\left( 1-4x \right)\left( 1-3x \right)=6x\left( 2x-1 \right)\]
Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:
\[1\cdot 1+1\cdot \left( -3x \right)+\left( -4x \right)\cdot 1+\left( -4x \right)\cdot \left( -3x \right)=6x\cdot 2x+6x\cdot \left( -1 \right)\]
А теперь аккуратно выполним умножение в каждом слагаемом:
Приводим подобные слагаемые:
Мы вновь получили окончательный ответ.
Нюансы решения
Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.
Об алгебраической сумме
Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.
В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.
Решение уравнений с дробью
Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:
- Раскрыть скобки.
- Уединить переменные.
- Привести подобные.
- Разделить на коэффициент.
Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.
Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:
- Избавиться от дробей.
- Раскрыть скобки.
- Уединить переменные.
- Привести подобные.
- Разделить на коэффициент.
Пример №1
Давайте избавимся от дробей в этом уравнении:
\[\left( 2x+1 \right)\left( 2x-3 \right)=\left( ^>-1 \right)\cdot 4\]
\[2x\cdot 2x+2x\cdot \left( -3 \right)+1\cdot 2x+1\cdot \left( -3 \right)=4^>-4\]
Выполняем уединение переменной:
Выполняем приведение подобных слагаемых:
\[-4x=-1\left| :\left( -4 \right) \right.\]
Мы получили окончательное решение, переходим ко второму уравнению.
Пример №2
Здесь выполняем все те же действия:
\[1\cdot 1+1\cdot 5x+\left( -x \right)\cdot 1+\left( -x \right)\cdot 5x+5^>=5\]
Вот, собственно, и всё, что я хотел сегодня рассказать.
Ключевые моменты
Ключевые выводы следующие:
- Знать алгоритм решения линейных уравнений.
- Умение раскрывать скобки.
- Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
- Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.
Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!
К сожалению, информация по данному уроку пока отсутствует.
Переместительное свойство сложения и умножения: от перемены мест слагаемых (множителей) сумма (произведение) не меняется.
Прежде чем мы начнем основную часть урока, перечислю для тебя определения, с которыми мы познакомимся сегодня:
Для продолжения урока кликните на кнопку ниже:
Отзывы:
урок был познавательным, оцениваю.
Очень нравится налаженный контакт и понимание между педагогом и учеником. Это важный момент. Легко и доступно подаётся материал. Спасибо!
Чудесный репетитор! Готовимся к ОГЭ по математике. Очень понятно объясняет. Всегда можно задать миллион вопросов и на каждый из них будет дан четкий понятный ответ
Введение определения первообразной функции, связь производной и первообразной, семейство первообразных для функции и их графики, произвольная постоянная в записи первообразной функции.
Читайте также: