Как сделать уравнение с десятичными дробями
Загрузить презентацию (531 кБ)
- проверить умение выполнять действия с десятичными дробями устно и письменно; закрепить и проверить умение решать уравнения и задачи на десятичные дроби;
- развивать быструю работу мысли, смекалку и внимательность; развивать интерес к математике.
- воспитывать дружеские отношения в классе и чувство сопереживания друг другу; развивать умение высказываться.
Вид урока: обобщение и систематизация знаний.
Тип урока: урок-олимпиада с использованием презентации.
Оборудование: таблица с записанными на ней десятичными дробями, карточки с уравнениями, карточки с задачами, таблица с заданием на смекалку, таблица с примерами для устного счёта.
1. Организационный момент (3 мин.)
Успокоить и рассадить детей.
2. Разминка – устная работа (3 мин) (Слайд 2)
Учитель: Любое соревнование начинается с разминки. Нашей разминкой будет устный счет. Но в этот раз разминка не будет влиять на результат соревнований, и задания будут даны вразброс. Поэтому сейчас самое главное – не правильно отвечать, а настроиться на урок.
0,2 · 43 + 0,4 : 0,3 · 2,05 = 61,5 | 0,54 + 3,06 : 0,2 : 9 – 1,99 = 0,01 | 3,5 · 0,2 + 1,1 : 2 + 0,1 = 1 |
Примеры задаются вразброс, чтобы подключить к работе со всех рядов как можно больше учеников.
Даются поочередно условия. Найти:
– дробь, больше 2,5, но меньше 3;
– самую маленькую дробь, находящуюся в промежутке от 2 до 3;
– самую большую дробь в промежутке от 1 до 2;
– дробь, в которой одна цифра повторяется несколько раз.
Учитель: Следующее наше соревнование позволит узнать, чей ряд точнее. Раздаются карточки с уравнениями. У каждого своя карточка, свое уравнение. Его нужно решить не на скорость, а на точность. Тот, кто решит быстрее, баллов не получит. Он все равно будет ждать остальных. Но все равно, время ограничено, на решение дается 4-5 минут. После этого, начиная с первого, ответы уравнений будут читаться и проверяться. Если уравнение решено правильно, то балл добавляется, если ответ неверный, то и балла не будет.
Раздаются карточки. Первая карточка –самая простая, поэтому она дается слабым ученикам. По команде ученики начинают решение. После 5 минут проводится проверка. Каждое уравнение – у трех участников с разных рядов. Один читает ответ, другой говорит вслух, правильно или нет, если неправильно, предлагает свой результат. А у третьего проверяет преподаватель, при этом говорит, у кого из участников правильный ответ, а у кого нет. Для проверки, конечно, надо сделать шаблон. После проверки всех уравнений подсчитываются баллы. Если какое-то уравнение никто не смог решить, его надо разобрать на доске. Если же ошибся один, или, может быть, двое учеников, они подходят после урока, или на следующем уроке уравнение разбирается на доске.
Учитель: Теперь пришла пора узнать, кто выше прыгнет. Для того, чтобы прыгнуть как можно выше, надо решить задание на смекалку. В данных примерах надо расставить занятые таким образом, чтобы равенства были верными. Всего 9 примеров, на каждый ряд по 3. Чтобы прыгнуть высоко, надо решить все три примера. Решение меньшего количества означает прыжок ниже. Отвечают все по очереди: сначала ученик с первого ряда, затем со второго, а потом –с третьего. На каждый прыжок дается не более двух попыток. Значит, если предложено два варианта, и ни один не является верным, то высота не взята.
–На доске в три столбика записаны примеры:
Кто первый из ряда поднимет руку, тот отвечает. Если ответили правильно, значит, первая высота пройдена. Отвечает второй ряд, затем третий. Если же ответили неверно, то высота не является взятой, остается еще одна попытка. Трижды к одному примеру возвращаться нельзя. Если какой-то пример в классе не решен, то его записывают для решения дома. За все три примера, как за самую большую высоту, дается 5 баллов. Если не решен один пример, то дается 3 балла. Если же решен только один пример, то дается 1 балл. В конце подводятся итоги за данный вид работы и за все вместе.
Учитель: Теперь пришла пора узнать, кто сильнее. В этом нам, как и на прошлой олимпиаде, поможет решение задач, И пройдет оно таким образом. Задачи буду на десятичные дроби. На ряд дается 5 задач разной сложности. Какой сложности задачу решать, вы будете выбирать сами. Каждая задача – это этап. Если кто-то из ряда решил эту задачу, то этап считается пройденным.
Этапы идут с первого по пятый. Первый, второй и третий этапы дают по три очка каждый.
Четвертый этап дает 4 очка, а пятый – 5 очков.
1) В вазу положили конфеты двух видов. Найдите массу смеси конфет, если в ней 3,8 кг конфет первого вида, а конфет второго вида на 1,5 кг больше.
2) На трех машинах 14,5т груза. На первой машине 5,2т, а на второй – на 0,8т меньше, чем на первой. Сколько тонн груза на третьей машине?
3) Груз в 11,2т распределили на две автомашины так, что на одной из них оказалось на 0,84т больше, чем на другой. Сколько тонн груза оказалось на каждой автомашине?
4) Два мотоциклиста движутся в противоположных направлениях. Скорость одного из них 22км/ч, а другого – на 4км/ч больше. Какое расстояние будет между ними через 0,25ч, если сейчас между ними 0,8 км?
5) На пошив пальто ушло в 4 раза больше ткани, чем на юбку.Сколько метров ткани ушло на пошив пальто, если на юбку ушло на 2,55 м ткани меньше, чем на пальто?
Учитель: Чтобы узнать, кто самый ловкий, выполним задание на смекалку. На доске висит плакат, на нем паутина, связывающая кружочки с десятичными дробями. Задание такое: надо с одного угла до другого соединить числа арифметическими знаками так, чтобы из 0,1 получилась 1. Кто продумал такую комбинацию, поднимает руку и показывает на доске свое решение. Если решение верное, то команда зарабатывает 3 балла.
8. Подведение итогов (3 мин) (Слад 8)
Подсчитать баллы и похвалить выигравшую команду. За активность и дружбу поставить всем хорошие оценки. Похвалить активных ребят в каждом ряду. Обсудить с детьми, что они уже умеют решать хорошо, а что необходимо закрепить. Дать домашнее задание. Собрать тетради на проверку. В тетрадях проверяются уравнения и задачи, за что тоже можно позже выставить оценки. Но главное – по тетрадям будет видно, с какими уравнениями и задачами дети справились, а какого типа задания еще нужно закрепить перед контрольной работой. Тут же будет видно, справляются ли дети с оформлением уравнений и задач.
Не могу понять как решать, кто знает?
Некоторые из данных уравнений можно решить устно. Опреде-
лите какие и найдите х. Выполните проверку. Остальные уравнения
решите, выполнив письменные вычисления:
1) 2,6х = 1307,8; 4) x∙ 23,5 = 143,35; 7) 2,31x = 0,1617;
2) х ∙ 7,08 = 84,96; 5) 5,3х = 4,24; 8) х ∙ 3,4 = 3,4068;
3) 512х = 5,12; 6) 0,342х = 0,342; 9) 28х = 0,028.
Можно наверно так:
1) 2,6 х = 1307,8; 2) х · 7,08 = 84,96;
х = 1307,8 : 2,6 х = 84,96 : 7,08;
х = 503; х = 12;
3) 512х = 5,12; х = 5,12 : 512; х = 512: 51 200; х = 0,01.
Действительно, 512 · 0,01 = 5,12.
6) 0,342х = 0,342; х = 0,342 : 0,342; х = 1.
Действительно, 0,342 · 1 = 0,342.
8) 28х = 0,028; х = 0,028 : 28; х = 0,001.
Действительно, 28· 0,001 = 0,028
Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей.
Онлайн калькулятор уравнений с дробями
Дробью в математике называется число, представляющее часть единицы или несколько её частей.
Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби – количество взятых этих частей целого.
Дроби бывают правильными и неправильными.
- Правильной называется дробь, у которой числитель меньше знаменателя.
- Неправильная дробь – если у дроби числитель больше знаменателя.
Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть, называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь.
Как перевести смешанную дробь в обыкновенную
Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя:
Как перевести обыкновенную дробь в смешанную
Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:
- Поделить числитель дроби на её знаменатель
- Результат от деления будет являться целой частью
- Остаток отделения будет являться числителем
Как перевести обыкновенную дробь в десятичную
Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.
Как перевести десятичную дробь в обыкновенную
Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:
- Записать дробь в виде десятичная
- Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
- Найти наибольший общий делитель и сократить дробь.
Как перевести дробь в проценты
Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.
Как перевести проценты в дробь
Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.
Используя этот онлайн калькулятор с дробями, вы сможете сложить, вычесть, умножить, разделить или возвести в степень обыкновенные дроби, смешанные числа (дроби с целой частью), десятичные дроби и целые числа, соответственно найти их сумму, разность, произведение или частное.
Воспользовавшись онлайн калькулятором дробей, вы получите детальное пошаговое решение вашего примера, которое позволит понять алгоритм решения задач с дробями и закрепить пройденный на уроках материал.
Калькулятор дробей
Инструкция использования калькулятора дробей
Для решения вашей задачи выполните следующие действия:
- введите ваш пример в калькулятор;
- нажмите кнопку для выполнения вычислений.
Ввод данных в калькулятор дробей
В калькулятор дробей можно вводить: целые числа, десятичные дроби, обыкновенные дроби и смешанные числа.
Целые числа. Для ввода целых чисел используйте цифровые клавиши калькулятора или цифровые клавиши вашего компьютера. 1 2 3 4 5 6 7 8 9 0
Десятичные дроби. Десятичные дроби вводятся также как и целые числа, в качестве десятичного разделителя рекомендуется использовать точку .
Обыкновенные дроби: Для ввода обыкновенной дроби нажмите клавишу на клавиатуре калькулятора - после чего введите значения числителя и знаменателя дроби используя числовые клавиши.
Смешанные числа: Используя числовые клавиши введите целую часть смешанной дроби, нажмите клавишу дроби на клавиатуре калькулятора - после чего введите значения числителя и знаменателя дроби используя числовые клавиши.
Отрицательные числа: Перед числом поставьте знак минус - , не забывайте брать отрицательные числа в скобки ( ) .
Возведение в степень: Для возведения числа в степень введите число нажмите клавишу a b , затем введите значение степени. (На компьютере степень можно ввести нажав клавишу "^". Например, для ввода 4 3 нужно набрать 4^3)
N.B. Калькулятор поддерживает только целые степени!
N.B. Буквенные выражения, операции извлечения корня калькулятор не поддерживает!
Дополнительные возможности калькулятора дробей - старая версия
- С - полностью очистить поле ввода.
- - удалить один символ.
- для перемещения между полями калькулятора.
Ввод данных в калькулятор дробей - старая версия
В калькулятор дробей можно вводить: целые числа, десятичные дроби, обыкновенные дроби и смешанные числа.
Для ввода отрицательных чисел знак минус вводится в поле для целой части:или |
N.B. Буквенные выражения, операции извлечения корня и возведения в степень калькулятор не поддерживает!
Дополнительные возможности калькулятора дробей - старая версия
Инструкция использования калькулятора дробей - старая версия
Для сложения, вычитания, умножения или деление двух дробей выполните следующие действия:
- введите значения дробей в онлайн калькулятор;
- выберите
- "+" - для сложения дробей,
- "-" - для вычитания дробей,
- "×" - для умножения дробей,
- "÷" - для деления дробей;
Правила. Сложение, вычитание, умножение и деление дробей.
Сложение обыкновенных дробей
- Чтобы сложить две обыкновенные дроби, следует:
- сложить числители дробей, а знаменатель оставить без изменений;
- если получилась неправильная дробь преобразовать неправильную дробь в смешанную.
Вычитание обыкновенных дробей
- Чтобы вычесть из одной обыкновенной дроби другую, следует:
- из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений;
Умножение обыкновенных дробей
- Чтобы умножить две обыкновенные дроби, надо:
- перемножить числители и знаменатели дробей;
Деление обыкновенных дробей
Чтобы разделить одну обыкновенную дробь на другую, надо умножить первую дробь на дробь, обратную второй.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Читайте также: