Как сделать уравнение с 2 иксами
Данный алгоритм поможет учащимся второго класса безошибочно решать уравнения.
Вложение | Размер |
---|---|
математика | 13.96 КБ |
algoritm_resheniya_uravneniy.docx | 13.96 КБ |
Предварительный просмотр:
Алгоритм решения уравнений 2 класс
1. Прочитаю уравнение.
2. Определю неизвестный компонент.
3. Вспомню правило.
4. Найду неизвестное число.
5. Выполню проверку.
Чтобы найти неизвестное СЛАГАЕМОЕ, нужно из СУММЫ вычесть известное СЛАГАЕМОЕ.
УМЕНЬШАЕМОЕ, нужно к РАЗНОСТИ
Чтобы найти ВЫЧИТАЕМОЕ, нужно из УМЕНЬШАЕМОГО
Алгоритм решения уравнений 2 класс
1. Прочитаю уравнение.
2. Определю неизвестный компонент.
3. Вспомню правило.
4. Найду неизвестное число.
5. Выполню проверку.
Чтобы найти неизвестное СЛАГАЕМОЕ, нужно из СУММЫ вычесть известное СЛАГАЕМОЕ.
УМЕНЬШАЕМОЕ, нужно к РАЗНОСТИ
Чтобы найти ВЫЧИТАЕМОЕ, нужно из УМЕНЬШАЕМОГО
Предварительный просмотр:
Алгоритм решения уравнений 2 класс
1. Прочитаю уравнение.
2. Определю неизвестный компонент.
3. Вспомню правило.
4. Найду неизвестное число.
5. Выполню проверку.
Чтобы найти неизвестное СЛАГАЕМОЕ, нужно из СУММЫ вычесть известное СЛАГАЕМОЕ.
УМЕНЬШАЕМОЕ, нужно к РАЗНОСТИ
Чтобы найти ВЫЧИТАЕМОЕ, нужно из УМЕНЬШАЕМОГО
Алгоритм решения уравнений 2 класс
1. Прочитаю уравнение.
2. Определю неизвестный компонент.
3. Вспомню правило.
4. Найду неизвестное число.
5. Выполню проверку.
Чтобы найти неизвестное СЛАГАЕМОЕ, нужно из СУММЫ вычесть известное СЛАГАЕМОЕ.
УМЕНЬШАЕМОЕ, нужно к РАЗНОСТИ
Чтобы найти ВЫЧИТАЕМОЕ, нужно из УМЕНЬШАЕМОГО
По теме: методические разработки, презентации и конспекты
Математика. Алгоритм решения уравнений
Алгоритм решения уравнений в начальной школе.
Памятка для родителей. Алгоритм решения уравнений.
Памятка для родителей. Алгоритм решения уравнений.
Алгоритм решения уравнения
Презентация к уроку математики по теме "Алгоритм решения уравнения" (школа 2100).
В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.
Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?
— такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.
Под простейшим уравнением подразумевается конструкция:
Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:
- Раскрыть скобки, если они есть;
- Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
- Привести подобные слагаемые слева и справа от знака равенства;
- Разделить полученное уравнение на коэффициент при переменной $x$ .
Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:
А теперь давайте посмотрим, как всё это работает на примере реальных задач.
Примеры решения уравнений
Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.
Решаются такие конструкции примерно одинаково:
- Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
- Затем свести подобные
- Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.
Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.
Схема решения простейших линейных уравнений
Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:
Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.
Решаем реальные примеры простых линейных уравнений
Задача №1
На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:
Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:
Вот мы и получили ответ.
Задача №2
\[5\left( x+9 \right)=5x+45\]
В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:
И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:
При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.
Задача №3
Третье линейное уравнение уже интересней:
\[\left( 6-x \right)+\left( 12+x \right)-\left( 3-2x \right)=15\]
Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:
Выполняем второй уже известный нам шаг:
Что необходимо помнить при решении линейных уравнений
Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:
- Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
- Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.
Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.
Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.
Решение сложных линейных уравнений
Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.
Пример №1
\[12-\left( 1-6x \right)x=3x\left( 2x-1 \right)+2x\]
Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:
\[12-\left( x-6x\cdot x \right)=3x\cdot 2x-3x+2x\]
Теперь займемся уединением:
Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:
Пример №2
\[8\left( 2x-1 \right)-5\left( 3x+0,8 \right)=x-4\]
Выполняем те же действия. Первый шаг:
Перенесем все, что с переменной, влево, а без нее — вправо:
Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:
либо корней нет.
Нюансы решения
Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.
\[12-\left( 1-6x \right)x=3x\left( 2x-1 \right)+2x\]
Точно также мы поступаем и со вторым уравнением:
\[8\left( 2x-1 \right)-5\left( 3x+0,8 \right)=x-4\]
Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.
Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.
Решение ещё более сложных линейных уравнений
То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.
Задача №1
\[\left( 7x+1 \right)\left( 3x-1 \right)-21^>=3\]
Давайте перемножим все элементы в первой части:
Давайте выполним уединение:
Выполняем последний шаг:
Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.
Задача №2
\[\left( 1-4x \right)\left( 1-3x \right)=6x\left( 2x-1 \right)\]
Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:
\[1\cdot 1+1\cdot \left( -3x \right)+\left( -4x \right)\cdot 1+\left( -4x \right)\cdot \left( -3x \right)=6x\cdot 2x+6x\cdot \left( -1 \right)\]
А теперь аккуратно выполним умножение в каждом слагаемом:
Приводим подобные слагаемые:
Мы вновь получили окончательный ответ.
Нюансы решения
Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.
Об алгебраической сумме
Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.
В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.
Решение уравнений с дробью
Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:
- Раскрыть скобки.
- Уединить переменные.
- Привести подобные.
- Разделить на коэффициент.
Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.
Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:
- Избавиться от дробей.
- Раскрыть скобки.
- Уединить переменные.
- Привести подобные.
- Разделить на коэффициент.
Пример №1
Давайте избавимся от дробей в этом уравнении:
\[\left( 2x+1 \right)\left( 2x-3 \right)=\left( ^>-1 \right)\cdot 4\]
\[2x\cdot 2x+2x\cdot \left( -3 \right)+1\cdot 2x+1\cdot \left( -3 \right)=4^>-4\]
Выполняем уединение переменной:
Выполняем приведение подобных слагаемых:
\[-4x=-1\left| :\left( -4 \right) \right.\]
Мы получили окончательное решение, переходим ко второму уравнению.
Пример №2
Здесь выполняем все те же действия:
\[1\cdot 1+1\cdot 5x+\left( -x \right)\cdot 1+\left( -x \right)\cdot 5x+5^>=5\]
Вот, собственно, и всё, что я хотел сегодня рассказать.
Ключевые моменты
Ключевые выводы следующие:
- Знать алгоритм решения линейных уравнений.
- Умение раскрывать скобки.
- Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
- Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.
Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!
Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.
Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной \(х\) не в основании степени, а в самом показателе. Как это выглядит:
Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:
Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение \(х\). Познакомиться с понятием степени и ее свойствами можно тут и тут.
И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:
И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.
Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.
Простейшие показательные уравнения
Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:
Пример 1 $$ 2^x=8;$$
Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо \(х\) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:
Значит, если \(х=3\), то мы получим верное равенство, а значит мы решили уравнение.
Решим что-нибудь посложнее.
Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:
Мы применили свойство отрицательной степени по формуле:
Теперь наше уравнение будет выглядеть так:
Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны \(3\), только вот степени разные – слева степень \((4х-1)\), а справа \((-2)\). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:
Такое мы решать умеем, ведь это обыкновенное линейное уравнение.
Поздравляю, мы нашли корень нашего показательного уравнения.
Пример 3 $$125^x=25;$$
Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что \(125=5*5*5=5^3\), а \(25=5*5=5^2\), подставим:
Воспользуемся одним из свойств степеней \((a^n)^m=a^\):
И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:
И еще один пример:
Пример 4 $$2^x=-4;$$
Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить \(2\) в различную степень, вы никогда не сможете получить отрицательное число.
Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.
Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.
Общий метод решения показательных уравнений
Пусть у нас есть вот такой пример:
Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).
Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.
Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:
Раз основания одинаковые, то мы можем просто приравнять степени:
Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:
Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:
Основания одинаковые, значит можно приравнять степени:
$$x=4.$$
Пример 6 $$5^=125 \Rightarrow 5^=5*5*5 \Rightarrow 5^=5^3 \Rightarrow –x=3 \Rightarrow x=-3.$$
Пример 7 $$9^=81 \Rightarrow (3*3)^=3*3*3*3 \Rightarrow(3^2)^=3^4 \Rightarrow 3^=3^4 \Rightarrow 8x=4 \Rightarrow x=\frac.$$
Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).
Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:
Пример 8 $$ 3^x=2;$$
\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):
Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):
Подставим данное преобразование в наш пример:
Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:
Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.
Кто забыл, что такое логарифм, можно посмотреть здесь.
Рассмотрим еще несколько аналогичных примеров.
Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:
Все эти варианты ответа верные, их можно смело писать в ответ.
И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).
Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:
Решение показательных уравнений при помощи замены
Пример 10 $$ 9^x-5*3^x+6=0;$$
Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.
Здесь это сделать легко, замечаем, что \(9=3^2\), тогда \(9^x=(3^2)^x=3^=(3^x)^2\). Здесь мы воспользовались свойством степеней: \((a^n)^m=a^\). Подставим:
Квадратное уравнение, которое решается через дискриминант:
Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:
И второй корень:
И еще один пример на замену:
Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание \(3\). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член \(3=2+1\) и вынести общий множитель \(2\):
Подставим в исходное уравнение:
Теперь показательные функции одинаковы и можно сделать замену:
Обратная замена, и наше уравнение сводится к простейшему:
И второе значение \(t\):
Тут у нас две показательные функции с основаниями \(7\) и \(3\), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на \(3^x\):
Здесь нам придется воспользоваться свойствами степеней:
Разберем каждое слагаемое:
Теперь подставим получившееся преобразования в исходное уравнение:
Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену \(t=(\frac)^x\):
Сделаем обратную замену:
И последний пример на замену:
Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:
Разберем каждое слагаемое нашего уравнения:
Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны - отрицательная степень не имеет никакого отношения к знаку показательной функции!
И последнее слагаемое со степенью:
Подставим все наши преобразования в исходное уравнение:
Теперь можно сделать замену \(t=2^x\) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель \(2^x\)):
Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.
И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут
Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании \(2\), \(5\) и \(10\). Очевидно, что \(10=2*5\). Воспользуемся этим и подставим в наше уравнение:
Воспользуемся формулой \((a*b)^n=a^n*b^n\):
И перекинем все показательные функции с основанием \(2\) влево, а с основанием \(5\) вправо:
Сокращаем и воспользуемся формулами \(a^n*a^m=a^\) и \(\frac=a^\):
Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.
Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!
Частые ошибки, необходимая краткая теория, статистика прошлых лет во 2й части ЕГЭ по математике профильного уровня.
Подробный разбор метода координат в стереометрии. Формулы расстояния и угла между скрещивающимися прямыми. Уравнение плоскости. Координаты вектора. Расстояние от точки до плоскости. Угол между плоскостями. Выбор системы координат.
Урок по теме логарифмы и их свойства. Разбираемся, что такое логарифм и какие у него свойства. Научимся считать выражения, содержащие логарифмы. И рассмотри несколько возможных заданий №9 из ЕГЭ по профильной математике.
Разбираем, как вычислить степень с рациональным (дробным) показателем. Свойства степени с рациональным показателем. Примеры решения задания №9 из ЕГЭ по математике профильного уровня.
Что такое корень n-й степени. Познакомимся со свойствами коня n-й степени и методами оценки значения корня. Разберем какая у него областью определения.
Знакомимся с понятием степени с натуральным показателем и ее свойствами. Разбор преобразования сложные степенных выражений на примерах.
Цикл уроков про степени и логарифмы и их свойства. Учимся решать показательные и логарифмические уравнения и неравенства. Задания №9 и №15 ЕГЭ по профильной математике.
Индивидуальные занятия с репетитором для учеников 6-11 классов. Для каждого ученика я составляю индивидуальную программу обучения. Стараюсь заинтересовать ребенка предметом, чтобы он с удовольствием занимался математикой и физикой.
Часто приходится описывать реальную ситуацию, процесс, явление с помощью математического языка.
Математический язык- универсальный язык, с помощью него можно однозначно и кратко описать многие закономерности, процессы, задачи и т.д.
Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.
Описывая реальность с помощью математического языка, люди создают математические модели, превращающие слова в формулы, неравенства, равенства, уравнения и т.п.
Математическая модель дает возможность решать огромное количество практических (природных, технических, научных, экономических, социальных и других) задач.
Математические модели делят на:
- Словесные.
- Графические (схемы, графики, чертежи, рисунки и т.д.).
- Аналитические (алгебраические: числовые равенства, неравенства, уравнения, формулы и т.д.).
На данном уроке подробно рассмотрим одну из аналитических математических моделей- уравнение.
Выясним, что такое уравнение и что называют корнем уравнения.
Рассмотрим простейшие виды уравнений.
Разберем способы и приемы решения уравнений с одним неизвестным.
Рассмотрим алгоритм и примеры решения задач с помощью уравнений.
Уравнения
Часто при решении задач приходится составлять равенства.
В математике различают два вида равенств: тождества и уравнения.
Тождества- это числовые равенства, а также равенства, которые выполняются при всех допустимых значениях переменных, входящих в него.
Уравнение- это равенство, содержащее неизвестные числа, обозначенные буквами, значение которых можно определить.
Чаще всего в математике неизвестные величины обозначают маленькими буквами латинского алфавита x, y, z.
У меня есть дополнительная информация к этой части урока!
Долгое время в математических выкладках не использовали буквенные обозначения и записывали выражения и уравнения словами.
В 1591 году французский ученый философ Франсуа Виет ввел буквенные обозначения. Он предложил использовать гласные буквы латинского алфавита для названия величин, а согласные для неизвестных.
Позже другой французский ученый, философ Рене Декарт предложил иную систему обозначений, связанную с латинскими буквами (которую используют по сегодняшний день).
Для неизвестных было предложено использовать последние буквы латинского алфавита (х, у, z), а для известных величин первые буквы латинского алфавита (а, b, c)
Пример 1:
4 + х = 18 является уравнением с неизвестной х.
12у - 5 = 19 является уравнением с неизвестной у.
(2 + z) - (3 - 1) = 2 является уравнением с неизвестной z.
Все три записи являются равенствами, в каждом из них есть неизвестное число, обозначенное буквой.
Пример 2:
4х - 18 не является уравнением, так как не является равенством.
24 - 5 = 19 не является уравнением, так как не содержит неизвестную.
у + 2 > 12 не является уравнением, так как не является равенством.
Решить уравнение- это значит найти неизвестное число, при котором из уравнения получается верное равенство.
Уравнение считается решенным, если все его решения найдены или доказано, что уравнение решения не имеет.
Значение неизвестного, обращающее уравнение в верное равенство, называют корнем уравнения.
Следовательно, если в уравнение вместо неизвестной подставить ее численное значение и получится верное числовое равенство, то это значение неизвестной будет решением этого уравнения.
Дано уравнение 12 - х + 3 = 10.
1) Пусть х равно 6, получаем
12 - 6 + 3 = 10
9 ≠ 10 (девять не равно десяти)
При подстановке вместо неизвестного число 6, получаем неверное числовое равенство 9 ≠ 10, т.е. число 6 не является корнем уравнения.
2) Пусть х равно 5, получаем
12 - 5 + 3 = 10
10 = 10
При подстановке вместо неизвестного число 5, получаем верное числовое равенство 10 = 10, т.е. число 5 является корнем уравнения.
Уравнение может иметь разное количество корней: существуют уравнения, имеющие один единственный корень, уравнения, имеющие два, три корня.
Встречаются уравнения, вообще не имеющие верного решения, и даже такие уравнения, решением которых являются бесконечное множество решений.
7 - х = 4 уравнение имеет один корень, х = 3, любое другое значение х будет давать неверное равенство.
х = х - 15 уравнение не имеет решения, так как любое значение неизвестного х будет данное равенство обращать в неверное, не существует таких чисел, которые были бы меньше самого себя.
0 ⋅ y = 0 уравнение имеет бесконечное множество верных решений, так как при умножении любого числа на 0, получается 0.
Уравнение, содержащее одну неизвестную, называют уравнением с одной неизвестной.
Уравнения с большим количеством неизвестным называют соответственно уравнением с двумя, тремя и т.д. неизвестными.
Такие уравнения и их решение будете рассматривать в старших классах.
Например, 26 - 2х = 23 - х- это уравнение с одной неизвестной х.
53 - х = 19у- это уравнение с двумя неизвестными х и у.
Любое уравнение имеет левую и правую часть.
Выражение, стоящее слева от знака равно, называют левой частью уравнения, а выражение, которое стоит справа, правой частью уравнения.
Каждый компонент, из которых состоит уравнение, называют членами этого уравнения.
Обычно все члены уравнения, содержащие неизвестное, следует группировать в левой части уравнения, а известные - в правой.
Чаще всего уравнение записывают в левой части страницы, справа делают письменные вычисления (вычислительные операции).
При решении уравнения каждое новое равенство записывается с новой строки (т.е. решение оформляется в виде столбика равенств).
Таким образом, знак равенства при решении уравнения используют только один раз в каждой строке.
Читайте также: