Как сделать умножение в восьмеричной системе счисления
Сложение, вычитание, умножение и деление чисел столбиком. Причём числа могут быть введены в различных системах счисления.
- Калькулятор
- Инструкция
- Теория
- История
- Сообщить о проблеме
Этот калькулятор умеет осуществлять простейшие арифметические операции над числами. Причем числа могут быть введены в разных системах счисления.
После проведения расчета нажмите на кнопочку 'Расчет не верен' если Вы обнаружили ошибку. Или нажмите 'расчет верный' если ошибок нет.
Ключевые слова:
— позиционные системы счисления,
— арифметические операции в системе счисления с основанием q,
— Информатика. 10 класс: учебник / Л. Л. Босова, А. Ю. Босова. — М.: БИНОМ. Лаборатория знаний, 2016. - 288 с.
— Математические основы информатики: учебное пособие / Е. В. Андреева, Л. Л Босова, И. Н. Фалина — М.: БИНОМ. Лаборатория знаний, 2008. - 328 с.
Мы продолжаем изучать позиционные системы счисления. Вы узнали, что позиционные системы счисления бывают разные: десятичная, двоичная, восьмеричная и шестнадцатеричная. Вы научились переводить числа из одной системы счисления в другую. Но зачем нам с вами это надо? Конечно для того, чтобы производить расчеты. С 1 класса нас учат производить расчеты в десятичной системе счисления. А как вы думаете, можно ли производить расчеты в произвольной позиционной системе счисления? И зачем это нужно?
Все позиционные системы счисления “одинаковы”, а именно, во всех них выполняются арифметические операции по одним и тем же правилам:
— справедливы одни и те же законы арифметики: коммутативный (переместительный), ассоциативный (сочетательный), дистрибутивный (распределительный);
— справедливы правила сложения, вычитания, умножения и деления столбиком.
Мы узнаем на уроке:
- как строить таблицы сложения и умножения в заданной позиционной системе счисления;
- как выполнять сложение, умножение, вычитание и деление чисел, записанных в двоичной, восьмеричной и шестнадцатеричной системах счисления;
- как подсчитывать количество единиц в двоичной записи числа, являющегося результатом суммирования или вычитания степеней двойки.
Арифметические операции в позиционных системах счисления с основанием q выполняются по правилам, аналогичным правилам, действующим в десятичной системе счисления.
Чтобы в системе счисления с основанием q получить сумму S двух чисел A и B, надо просуммировать образующие их цифры по разрядам i справа налево:
-
если ai + bi 4000 + 4 2016 + 2 2018 – 8 600 + 6
Представим все операнды исходного выражения в виде степеней двойки:
Исходное выражение 2 4000 + 4 2016 + 2 2018 – 8 600 + 6
примет вид 2 4000 + 2 4032 + 2 2018 – 2 1800 + 2 2 + 2 1
Перепишем выражение в порядке убывания степеней: 2 4032 + 2 4000 + 2 2018 – 2 1800 + 2 2 + 2 1
Для работы с десятичными числами вида 2 n полезно иметь в виду следующие закономерности в их двоичной записи:
2 1 = 10 = 1 + 1; 2 2 = 100 = 11 + 1; 2 3 = 1000 = 111 + 1; …
В общем виде
Для натуральных n и m таких, что n > m, получаем:
Так как в задаче надо найти единицы, то получаем:
Итого: 1 + 1 + 218 + 1 + 1 = 222.
Давайте разберем еще одну задачу.
Найдём количество цифр в восьмеричной записи числа, являющегося результатом десятичного выражения: 2 299 + 2 298 + 2 297 + 2 296 .
Двоичное представление исходного числа имеет вид:
Всего в этой записи 300 двоичных символов. При переводе двоичного числа в восьмеричную систему счисления каждая триада исходного числа заменяется восьмеричной цифрой. Следовательно, восьмеричное представление исходного числа состоит из 100 цифр.
Итак, сегодня вы узнали, что арифметические операции в позиционных системах счисления с основанием q выполняются по правилам, аналогичным правилам, действующим в десятичной системе счисления. Если необходимо вычислить значение арифметического выражения, операнды которого представлены в различных системах счисления, можно:
- все операнды представить в привычной нам десятичной системе счисления;
- вычислить результат выражения в десятичной системе счисления;
- перевести результат в требуемую систему счисления.
Для работы с десятичными числами вида 2 n , полезно иметь ввиду следующие закономерности в их двоичной записи:
Для натуральных n и m таких, что n > m, получаем:
Выберите выражения, значения которых одинаковые.
Возьми карандаш и подчеркни результат сложения
1. Найди сумму и запиши в двоичной системе счисления 1538 + F916
3. Найди произведение и запиши в двоичной системе счисления 1223 * 112
6. Выполни операцию деления 100100002 / 11002
7. Реши пример, ответ запиши в десятичной системе счисления (5648 + 2348) * C16
По горизонтали:
2. Разность двоичных чисел 11001100 - 11111
4. Найти разность 1678 – 568
5. Выполнить операцию деления 416128 / 128
8. Найти разность 12E16 – 7916 ответ запиши в десятичной системе счисления
Сложение, вычитание, умножение и деление чисел столбиком. Причём числа могут быть введены в различных системах счисления.
- Калькулятор
- Инструкция
- Теория
- История
- Сообщить о проблеме
Этот калькулятор умеет осуществлять простейшие арифметические операции над числами. Причем числа могут быть введены в разных системах счисления.
После проведения расчета нажмите на кнопочку 'Расчет не верен' если Вы обнаружили ошибку. Или нажмите 'расчет верный' если ошибок нет.
Читайте также: