Как сделать творческую работу по математике 5 класс
Электронная папка должна содержать материалы, о которых говорится в пунктах 1, 2.
1. Электронная презентация по теме проекта в формате pptx или ppt.
2. Текст к электронной презентации в формате docx или doc.
Требования к презентации: белый фон, допускается украшение картинками по теме презентации. Шрифт: Times New Roman .
Образец оформления творческого проекта смотрите здесь (текст) и здесь (презентация).
3. Творческая часть (на ваш выбор):
- Математический кроссворд.
- Ребус (зашифрован математический термин).
- Математическая сказка (с интересным сюжетом о математике, о натуральных числах, о дробях, о геометрических фигурах).
- Придумать и решить задачу с интересным сюжетом:
- решаемую с помощью уравнения;
- содержащую обыкновенные дроби.
- Кто больше назовёт цифр в числе Пи.
- Кто быстрее соберёт кубик Рубика.
Кто с детских лет занимается математикой, тот развивает свой ум и внимание, воспитывает волю и настойчивость. А эти качества нужны всем без исключения: и врачу, и артисту, и учителю, и художнику.
В сборнике собраны задачи по теме "Дроби в задачах" , составленные учащимися 5-6 классов. Примеры этих задач стимулируют учащихся для сочинения своих задач и разнообразят и сделают более интересным и творческим урок математики.
Гридина Марина Петровна.
Л.Толстой
Тридцать седьмой год работая в школе, я прихожу к выводу, что эти слова Льва Николаевича Толстого будут актуальны столько, сколько будет существовать школа. Важность проблемы — развитие творческих способностей учащихся — обусловлена, на мой взгляд, двумя основными причинами. Первая из них — падение интереса к учебе. Замечали ли вы, как блестят глаза у шестилетних ребятишек, которые впервые приходят в школу? Они в большинстве своем ждут от учебы чего-то нового, необыкновенного, интересного. Дети доверчиво смотрят на учителя, они полны желания делать вместе с ним все новые и новые открытия. К сожалению, уже к концу начальной школы часть детей теряет интерес к учебе; но все-таки основная масса пятиклассников еще открыта для педагога, у них еще сильна мотивация к обучению. Но уже к концу десятилетнего обучения, как показывают различные психологические опросы, интерес к учебе сохраняют от 20 до 40 процентов учащихся. И вторая причина состоит в том, что современная эпоха требует от школы творческой, всесторонне-развитой и самодостаточной личности.
Винни Пух отправился на день рождения к Кролику и взял с собой полный горшочек мёда. По дороге к нему Винни проголодался и съел 2 ∕ 5 всего мёда. Пройдя ещё километр, он зашёл к своему другу Пятачку и вместе они съели половину оставшегося мёда. Подходя к дому Кролика, они встретили ослика Иа. Иа уговорил Винни дать ему попробовать, вкусный ли мёд он несёт их другу, и вылакал 0.3 всего горшочка. Внимание, вопрос: Обрадовался ли Кролик подарку и попили ли они чайку с мёдом.
Русалка собиралась на бал во дворец Нептуна. Причёску ей делали 15 минут, макияж – на 0.1 часа меньше, а одевалась она на 1 ∕ 2 часа дольше, чем ей делали причёску и макияж. Когда русалка пошла на бал, в коридоре она встретила свою сестру. Сестра сказала, что русалка опоздала на бал. Так ли это, если собираться она начала в 6 часов, а праздник начинался в 7 часов. Если да, то на сколько минут.
решил Буратино задачу и спас Мальвину. А вы сможете?
Очень любят ребята сочинять задачи, в которых нужно найти ошибки.
Ошиблась ли Катя.
Крошка-сын к отцу пришел
И сказала кроха:
«Не решу задачу я –
Где задачка, доставай,
«Вот плывет по речке плот,
Не торопится, плывет,
Три километра за час,
Чтоб приплыть в село как раз.
За ним следом теплоход
Он быстрей в пять раз плывет.
С какой скоростью, скажи,
«Что ж тут думать, сын, скажи,
Это ж очень просто.
Три умножим мы на пять,
Так и сделал сын тогда,
И в тетрадь на белый лист
Двойка гулять вышла.
«За что ж это двойка?
Разберись, сынок, ты сам,
Жил-был старик, и было у него три сына. Старший умный был детина, средний сын и так и сяк, младший вовсе был дурак. Жили они ни бедно, ни богато. Главным доходом у них была выручка от продажи пшеницы, которую выращивали братья на своем поле.
Решили они третью часть урожая засыпать в закрома, а остальные 70 мешков зерна продать на базаре. Половину – по цене 40 рублей за мешок, а другую половину по 30 рублей за мешок. Всю выручку – три тысячи рублей братья договорились поделить поровну: третью часть денег отдали старшему брату, половину остатка взял средний брат, а остальные деньги получил младший брат.
Сколько ошибок в задаче ?
Все задачи сопровождаются рисунками, а иногда обыгрываются по ролям.
Планируя нетрадиционный урок, необходимо учитывать специфику класса, характер учебного материала, возрастные особенности учащихся. Подобранные для урока задания должны отвечать следующим требованиям: развивать логику, сообразительность, смекалку; иметь практическую направленность; быть поучительными, расширять кругозор учащихся; быть занимательными по форме, содержанию, сюжету или по способу решения; задачи должны быть по возможности просты, доступны для основной массы учащихся.
Для учащихся нестандартный урок — переход в иное психологическое состояние, это другой стиль общения, положительные эмоции, ощущение себя в новом качестве; это возможность каждому проявить себя, развить свои творческие способности и личные качества. Дети, как правило, бывают поставлены в ситуацию успеха, что способствует пробуждению их активности и в работе на уроке, и в подготовке творческих домашних заданий. Нестандартный урок не только обучает, но и активно воспитывает ребенка.
Стараюсь на каждом уроке развивать и поддерживать интерес к предмету. В целях эффективного использования рабочего времени на уроках использую различные формы организации учебного процесса: уроки, лекции, практикумы, консультации, дополнительные занятия, конкурсы. На уроках стараюсь сочетать групповую форму работы с индивидуальной и самостоятельной, подбираю и составляю развивающие, логические, проблемные, интеллектуальные задания, которые носят обучающий, занимательный и развивающий характер, воспитывают у учащихся веру в свои силы.
Основное внимание направлено на то, чтобы все учащиеся достаточно твердо усвоили основные дидактические единицы программы. Очень важная для преподавателя задача – научить всех учащихся самостоятельно приобретать знания, а этого можно достичь путем вовлечения их в активную деятельность на всех этапах обучения
Самостоятельные занятия с ребенком в домашних условиях играют важную роль в процессе обучения. Даже не имея специального образования можно самостоятельно прорешивать с ним примеры и задачи по основным темам, встречающимся в текущем учебном году.
Эти задания вы можете распечатать на принтере.
§ Как правильно заниматься дома
Для того чтобы занятия действительно приносили пользу, необходимо придерживаться определенных правил, которые помогут сделать день продуктивнее, без утомления ребенка:
- Самое главное правило, которое пригодиться не только школьнику, но и любому взрослому человеку, это правильное чередования умственного труда и физического. Необходимо составить распорядок дня так, чтобы после физических нагрузок обязательно шли более спокойные, умственные занятия. Нельзя делать уроки сразу же после возвращения из школы, то же самое касается и дополнительных занятий.
- Для решения задач вне школьной программы лучше всего выбирать менее загруженные уроками дни.
- Во время занятий нужно убрать все отвлекающие факторы, для того чтобы внимание ребенка не рассеивалось. Если есть возможность решить важные дела перед уроками, то лучше сделать это заранее.
- Начинать всегда нужно со сложных задач, а затем переходить к более простым.
- Обязательно нужно хвалить ребенка за его достижения и правильно выполненную работу.
- Для того чтобы мозг работал, детям нужно давать шанс самостоятельно решать примеры и задачи. Даже если в течение долгого времени он не может найти ответ, не нужно делать очевидных подсказок, пусть он найдет путь решения самостоятельно.
- Хорошо запоминать принцип математических решений помогают ассоциации, например, дроби можно представлять как кусочки одного торта или яблока.
Перед тем как познакомиться с обыкновенными и десятичными дробями, необходимо вспомнить что такое натуральные числа. Ими называются числа, используемые в повседневной жизни, например для счета предметов.
✍ 3адание 1
Определить, какое число стоит перед:
Определить, какое число на две единицы больше, чем:
✍ 3адание 2
Написать в виде словосочетаний следующие цифры:
✍ 3адание 3
Представить в виде чисел словосочетания:
- триста шестьдесят девять;
- одна тысяча двести девяносто три;
- десять тысяч шестьсот восемьдесят восемь;
- двести пятнадцать тысяч семьсот двадцать четыре.
При помощи сравнения можно определить какое из чисел меньшее, а какое большее. Те что меньше, стоят при счете раньше, чем те, что больше.
✍ 3адание
- 18 32;
- 54 16;
- 347 524;
- 546 546;
- 675 23 433;
- 563 736 634;
- 392 450 81;
- 5 453 5 543;
- 949 3 432 563;
- 101 101 3 455 456.
✍ 3адание 1
Для того чтобы повторить сложение, вычитание чисел, а также порядок действий при вычислении сложного выражения, можно решить несколько выражений:
- 24 • (58 + 114) — 336;
- (563 — 260 : 4) + 61 • 37;
- 7 354 — (354 + 193 • 4) + (743 — 25);
- (1 623 + 570 : 30) — (3 540 — 413 • 7).
Ответ: 1) 3 792, 2) 2 755, 3) 6 946, 4) 993.
✍ 3аданиие 2
В саду росло 208 фруктовых деревьев. Яблонь и слив было 129 штук, а слив и груш — 115. Сколько яблонь росло в саду? Слив? Груш?
Решение: Если известно, что всего деревьев было 208, а яблонь и слив – 129, то можно вычислить количество груш.
1 действие: 208 – 129 = 79 грушевых деревьев.
Стало известно количество грушевых деревьев, значит можно узнать, сколько было слив.
2 действие: 115 – 79 = 36 сливовых деревьев.
После того, как стало известно, сколько было груш и слив, можно высчитать количество яблонь.
3 действие: 208 – (79 + 36) = 93 яблонь.
Ответ: В саду росло 93 яблони, 79 груш и 36 слив.
Отрезком называется часть прямой ограниченная двумя точками, его длинной считается расстояние между крайними точками. Луч — это часть прямой, которая состоит из точки и всех других точек, лежащих по одну сторону от нее.
✍ 3адание 1
Начертите отрезок АВ, равный 12 см. Отметьте на нем точки по порядку С и D так, чтобы отрезок АС был равен 4 см, а СD — 6 см. Вычислите, чему равен отрезок DВ?
Ответ: 12 — (4 + 6) = 2 см.
✍ 3адание 2
Начертите произвольную прямую и отметьте на ней два точки А, В и С так, чтобы длина отрезка АВ была 7 см, а отрезка ВС — 4 см. Какова длина отрезка АС?
Ответ: 7 + 4 = 11 см.
Уравнением называется равенство, в котором один или несколько компонентов являются неизвестными.
✍ 3адание 1
Решить уравнения
- 84 • x = 588;
- 4 • (18 + x) = 96;
- 14x — 8x = 18;
- 50 + 6x — 31 = 4;
- 13х + 20 — 4х — 16 + х = 54.
Ответ: 1) x=7, 2) х=6, 3) х=3, 4) х=-2,5, 5) х=5.
✍ 3адание 2
Насте 12 лет, что на 4 года меньше, чем возраста Лены. Сколько лет Лене? Решить уравнением.
Решение: Возьмем возраст Лены за x, в таком случае можно составить уравнение:
x – 4 = 12,
х = 12 + 4 = 16.
Ответ: Лене 16 лет.
✍ 3адание 3
Велосипедист за 3 дня проехал 117 км. Какое расстояние он преодолел в первый день, если в последующие два дня он проезжал на 4 км больше, чем в предыдущий? Какое расстояние он преодолел во 2-й и 3-й дни?
Решение: Расстояние которое проехал велосипедист за 1-й день, возьмем за x. В таком случае, второй день будет выглядеть как: x + 4, а третий: (х + 4) + 4.
Можно составить уравнение:
1 день 2 день 3 день
х + (х + 4) +( х + 4 + 4) = 117
3х + 12 = 117
3х = 117 – 12 = 105
х = 105: 3 = 35.
Проверка: 35 + 35 + 4 + 35 +4 + 4 = 117
Ответ: В первый день велосипедист проехал 35 км. Во 2-й день: 35 + 4 = 39 км. В 3-й день: 35 + 4 + 4 = 43 км.
Квадратом числа называется произведение этого числа самого на себя. Куб — произведение числа самого на себя два раза.
✍ 3адание 1
Найти квадрат чисел:
Ответ: 1) 25, 2) 81, 3) 169, 4) 2025, 5) 10 000, 6) 145 161.
Найти куб чисел:
Ответ: 1) 8, 2) 216, 3) 1 331, 4) 46 656, 5) 474 552, 6) 1 520 875.
✍ 3адание 2
Решить выражения:
- (7 + 4) 2 • 6;
- 5 352 — (47 2 + 4 3 );
- 61 2 — 7 • 2 3 + (20 — 4) 2 ;
- ( 5 + 26 ) 2 — ( 6 + 12 ) 2 — 69;
- (25 — 16) 3 + (36 — 33) 2 ;
- ( 5 + 6 ) 3 — ( 5 + 24) 2 + 727.
Ответ: 1) 726, 2) 3 079, 3) 3 921, 4) 568, 5) 738, 6) 1 217.
✍ 3адание 1
1. Паша собрал 34 гриба, из которых 16 грибов оказались подосиновиками. Какую часть от всех грибов составляют подосиновики?
Ответ: 8/17.
2. Всего в книге 124 страниц, из которых Толя прочитал ровно половину. Какую часть книги прочитал Толя?
Ответ: 1/2.
3. Оля собрала всего 38 ягод, из которых 17 штук были малиной. Какую часть от общего количества составляют остальные ягоды?
✍ 3адание 2
Начертите отрезок и разделите его на 13 равных частей. Отметьте на данном отрезке: 3/13, 6/13, 10/13.
✍ 3адание 3
1. Полина собрала 36 листьев, из которых березовые составляют 6/18. Сколько березовых листьев собрала Полина?
Ответ: 12.
2. Папа был на рыбалке и поймал всего 45 рыбок, 8/15 было карасей. Сколько карасей поймал папа?
Ответ: 24.
3. Мама стряпала пирожки, всего их получилось 32 штуки. 5/8 от общего количества были с капустой. Сколько пирожков с капустой состряпала мама?
Ответ: 20.
✍ 3адание 4
Сравнить дроби:
- 3/4 и 5/6;
- 12/13 и 7/26;
- 21/30 и 5/10;
- 7/20 и 8/12.
✍ 3адание 1
- 7⁄30 + 18⁄30 — 6⁄30;
- 3⁄19 + 8⁄19 — 4⁄19;
- 19⁄25 — ( 21⁄50 + 2⁄25 ) — 6⁄25;
- 13⁄76 — 11⁄76 + 49⁄76;
- 27⁄129 + ( 12⁄86 — 6⁄43 ) — 7⁄43.
Ответ: 1) 19/30, 2) 7/19, 3) 1/50, 4) 51/76, 5) 2/43.
✍ 3адание 2
Расстояние от дома до школы составляет 4/11 км, а от школы до магазина — 5/11 км. Чему равно расстояние от дома до магазина?
Решение: Для того чтобы найти сколько составляет весь путь, необходимо сложить расстояние от дома до школы и расстояние от школы до магазина 4/11 + 5/11 = 9/11 (км).
Ответ: Расстояние от дома до магазина составляет 9/11 км.
✍ 3адание 3
От рулона ткани первый раз отрезали 7/15 части, а затем еще 5/15, после чего в рулоне осталось 27 м. Сколько метров длина рулона?
Решение: В первую очередь нужно узнать какая часть рулона осталась.
1 действие: 15/15 — 7/15 — 5/15 = 3/15.
Можно сделать вывод, что 27 м составляет 3/15 части от всего рулона. Для того чтобы найти длину всего рулона ткани, необходимо узнать, сколько метров составляет 7/15 и 5/15 частей.
2 действие: 27 : 3 = 9 (м) — в 1 части.
3 действие: 9 • 7 = 63 (м) — составляет 7/15.
4 действие: 9 • 5 = 45 (м) — составляет 5/15.
После того, как стало известно какая длина у каждой из частей, можно вычислить всю длину рулона.
5 действие: 63 + 45 + 27 = 135 (м).
Ответ: длина рулона 135 метров.
✍ 3адание 1
- 8/13 • 1/2;
- 4/24 : 6/12;
- 3/21 • 7/9 : 2/4;
- 18/20 • 5/8 : 6/14;
- 2/5 : 15/30 • 9/11.
Ответ: 1) 4/13, 2) 1/3, 3) 2/9, 4) 21/16, 5) 36/55.
✍ 3адание 2
В первом ящике лежит 3/16 от всего количества яблок, а во втором в 3 раза больше. Какая часть от всего количества яблок лежит в обоих ящиках?
Решение: Сначала нужно узнать сколько яблок лежит во втором ящике.
1 действие: 3/16 •3 = 9/16 (яб.).
После того как стало известно сколько яблок лежит во втором ящике, можно узнать их общее количество.
2 действие: 3/16 + 9/16 = 12/16 = 3/4 (яб.)
Ответ: 3/4 части от общего количества яблок лежит в обоих ящиках.
✍ 3адание 3
3а два дня автомобиль поехал 6/10 пути. Известно, что во второй день он проделал путь в 4 раза больше, чем в первый. Cколько проехал автомобиль в первый и второй день?
Решение: Пусть первый день пути будет x, тогда можно составить уравнение x + х • 4 = 6/10.
х + х • 4 = 6/10;
5 • x = 6/10;
х = 6/10 : 5;
х = 3/25 — проехал автомобиль в 1 день.
После того как стало известно, какая часть пути была преодолена в 1 день, можно высчитать 2 день.
2 действие: 3/25 • 4 = 12/25.
Ответ: в первый день автомобиль проехал 3/25, а во второй — 12/25.
✍ 3адание 1
Представить обыкновенные дроби в виде десятичных:
Ответ: 1) 0,5; 2) 0,13; 3) 0,2; 4) 0,164; 5) 0,18.
✍ 3адание 2
Начертите отрезок, разделите его на 6 равных частей. Отметьте на нем точки 0,3; 1,5; 2,2; 3,7; 4; 5,6.
✍ 3адание 1
- 28,3 + 4,45;
- 58,9 + 18,1;
- 0,48 + 6,8;
- 34,1 — 2,2;
- 39 — 20,3;
- 15,28 — 6,347.
Ответ: 1) 32,75; 2) 77; 3) 7,28; 4) 31,9; 5) 18,7; 6) 8,933.
✍ 3адание 2
В первый день катер проплыл 3,5 км, во второй на 4,31 км больше, а в третий — на 0,9 км меньше, чем во второй. Сколько всего км проплыл катер за 3 дня?
Решение: Необходимо вычислить, сколько катер проплыл в первый и во второй день.
1 действие: 3,5 + 4,31 = 7,81 (км) — проплыл во второй день.
2 действие: 7,81 — 0,9 = 6,91 (км) — проплыл в третий день.
После того как стало известно, сколько было пройдено за каждый день, можно узнать весь путь.
3 действие: 3,5 + 7,81 + 6,91 = 18,22 (км).
Ответ: за три дня катер проплыл 18,22 км.
✍ 3адание 1
- 5,6 • 8,34;
- 11,4 • 24,08;
- 0,56 • 34,9;
- 6,8 : 3,2;
- 33,021 : 12,23;
- 59,72 : 6,26.
Ответ: 1) 46,704; 2) 274,512; 3) 19,544; 4) 2,125; 5) 2,7; 6) 9,54.
✍ 3адание 2
3агадано число, если его увеличить в 3 раза, а затем прибавить 2,16, то получиться 27,96. Какое число было загадано?
Решение: Пусть неизвестное число будет x, тогда можно составить уравнение х • 3 + 2,16 = 27,96.
х • 3 + 2,16 = 27,96;
Ответ: было загадано число 8,6.
✍ 3адание 3
Расстояние между населенными пунктами равно 53,7 км. Навстречу друг другу вышли два пешехода, скорость первого 3,8 км/ч, второго — 4,6 км/ч. Какое расстояние будет между ними через 2,7 часа?
Решение: Нужно вычислить, какое расстояние пешеходы пройдут за 2,7 часа.
1 действие: 3,8 • 2,7 = 10,26 (км) — пройдет первый пешеход.
2 действие: 4,6 • 2,7 = 12,42 (км) — пройдет второй пешеход.
После того как стало известно, сколько прошли пешеходы, можно высчитать, какой путь им еще нужно преодолеть до встречи друг с другом.
3 действие: 53,5 — 10,26 — 12,42 = 30,82 (км).
Ответ: через 2,7 часа между пешеходами будет 30,82 км.
СКАЧАТЬ И РАСПЕЧАТАТЬ ОТДЕЛЬНО ФАЙЛ «ЗАДАНИЯ ПО МАТЕМАТИКЕ 5 КЛАСС: ДЛЯ ЗАНЯТИЙ ДОМА (ОТВЕТЫ) В ФОРМАТЕ PDF
Читайте также: