Как сделать треугольник сопротивлений
Рассматриваемый метод основан на том, что сложную схему, имеющую три вывода (узла), можно заменить другой, с тем же числом выводов (узлов). Замену следует произвести так, чтобы сопротивление участка между двумя любыми выводами новой схемы было таким же, как у прежней. В результате получится цепь, сопротивление которой эквивалентно сопротивлению данной по условию. Общее сопротивление обеих цепей будет одинаковым. Однако, поскольку в результате такого преобразования изменяются токи внутри цепи, такую замену можно проводить только в тех случаях, когда не надо находить распределение токов.
Подобные преобразования широко известны для случая двух выводов. Так, например, два резистора сопротивлениями R1 и R2, включенные последовательно, можно заменить одним резистором сопротивлением R1 + R2. Если резисторы включены параллельно, то их можно заменить одним резистором сопротивлением
следовательно, для того чтобы сопротивления между точками 1 и 2 были одинаковы для обеих схем, необходимо, чтобы выполнялось следующее равенство:
Аналогично для точек 2 и 3 и для точек 1 и 3:
Сложим все эти уравнения и, поделив обе части на 2, получим:
Вычитая из этого уравнения поочередно предыдущие, получим:
Эти выражения легко запомнить:
$r_1 \rightarrow R_R_, r_2 \rightarrow R_R_, r_3 \rightarrow R_R_$.
Аналогично получают и формулы обратного преобразования:
Последние выражения также легко запомнить и проверить:
числитель у всех уравнений один и тот же, а в знаменателе стоит сопротивление резистора с индексом, которого не достает в левой части выражения.
Этот метод представляет собой наиболее универсальный подход к решению практически всех типов задач на разветвленные цепи.
Задача 27. Определите сопротивление цепи АВ (рис.), если R1 = R5 = 1 Ом, R2 = R6 = 2 Ом, R3 = R7 = 3 Ом, R4 = R8 = 4 Ом.
Сопротивления $r_1, r_2, …, r_6$ найдем по формулам:
Теперь нет никаких препятствий для расчета схемы, которая состоит из последовательно и параллельно соединенных резисторов (рис.). После простых расчетов получим
Преобразования треугольник-звезда и звезда-треугольник
Во многих схемах можно встретить такие конфигурации компонентов, в которых невозможно выделить последовательные или параллельные цепи. К этим конфигурациям относятся соединения компонентов в виде звезды (Y) и треугольника (Δ):
Очень часто, в ходе анализа электрических цепей, оказывается полезным преобразовать треугольник в звезду или, наоборот, звезду в треугольник. Практически, чаще возникает необходимость преобразования треугольника в звезду. Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. Иными словами, эквивалентные Δ и Y цепи ведут себя одинаково.
Существует несколько уравнений, используемых для преобразования одной цепи в другую:
Δ и Y цепи очень часто встречаются в 3-фазных сетях переменного тока, но там они, как правило, сбалансированы (все резисторы равны по значению) и преобразование одной цепи в другую не требует таких сложных расчетов. Тогда возникает вопрос: где мы сможем использовать эти уравнения?
Использовать их можно в несбалансированных мостовых схемах:
Анализ данной схемы при помощи Метода Токов Ветвей или Метода Контурных Токов довольно сложен. Теорема Миллмана и Теорема Наложения здесь тоже не помощники, так как в схеме имеется только один источник питания. Можно было бы использовать теорему Тевенина или Нортона, выбрав в качестве нагрузки резистор R3, но и здесь у нас вряд ли что-нибудь получится.
Помочь в этой ситуации нам сможет преобразование треугольник - звезда. Итак, давайте выберем конфигурацию резисторов R1, R2 и R3, представляющих собой треугольник (Rab, Rac и Rbc соответственно), и преобразуем ее в звезду:
После преобразования схема примет следующий вид:
В результате преобразования у нас получилась простая последовательно-параллельная цепь. Если мы правильно выполним расчеты, то напряжения между точками А, В и С преобразованной схемы будут аналогичны напряжениям между этими же точками исходной схемы, и мы сможем вернуть их обратно.
Сопротивления резисторов R4 и R5 остаются неизменными: 18 и 12 Ом соответственно. Применив к схеме последовательно-параллельный анализ, мы получим следующие значения:
Теперь, используя значения напряжений из приведенной выше таблицы, нам нужно рассчитать напряжения между точками А, В и С. Для этого мы применим обычную математическую операцию сложения (или вычитания для напряжения между точками В и С):
Переносим эти напряжения в исходную схему (между точками А, В и С):
Напряжение на резисторах R4 и R5 останется таким же, каким оно было в преобразованной схеме.
К данному моменту у нас есть все необходимые данные для определения токов через резисторы (используем для этой цели Закон Ома I = U / R):
Ток при последовательном соединении является общим для всех сопротивлений.
Треугольник напряжений позволяет построить треугольник сопротивлений. Для этого каждую сторону треугольника напряжений надо разделить на одну и ту же величину - ток.
Полученный треугольник будет подобный треугольнику напряжений. Этот треугольник получается не векторный, а его стороны соответствуют сопротивлениям цепи.
Из треугольника следует, что все сопротивления можно также определить по теореме Пифагора.
Из любого треугольника можно определить угол φ, сдвиг фаз между напряжением на R и L
Вернуться в оглавление лекций по переменному току
Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов
Сопротивление, проводимость, мощность, напряжение, ток треугольника. Общее сопротивление, проводимость, двухполюсник и их составляющие удовлетворяют соотношению и могут быть представлены треугольником (рисунок 2.3).
Комплексное напряжение и ток двухполюсной сети могут быть выражены в виде двух ортогональных компонентов.
В этом случае фаза напряжения соответствует текущей фазе, а фаза напряжения отличается от текущей фазы на ± π / 2. Аналогично, фаза совпадает с фазой, а фаза отличается от фазы на ± π / 2. Это связано с тем, что действующее напряжение и ток, а также их активные и реактивные компоненты также могут быть представлены в форме треугольника (рисунок 2.4). Если фазы тока и напряжения нескольких RLC-биполяр одинаковы, то есть биполяр имеет чисто активное сопротивление, его реактивная мощность равна нулю () и называется резонансной.
- Резонанс может быть достигнут путем изменения параметров схемы R, L, C или угловой частоты ω внешнего напряжения (тока). Ток в последовательном контуре RLC наблюдается на частоте, называемой резонансной частотой.
Коэффициент качества схемы характеризует резонансные характеристики цепи и определяется уравнением. (2.5) Зависимость тока этой цепи от частоты ω приложенного внешнего напряжения с инвариантностью эффективного значения U = const имеет вид. (2.6) Зависимость (2.6) называется резонансной кривой, а I0 = U / R — текущее значение в резонансе.
Когда ω = ω0. Ширина полосы пропускания (ω1-ω2) определяется из соотношения: ω1 и ω2 — частоты, на которых эффективное значение тока в 1 раз превышает фактические элементы схемы (приемник, источник) при расчете резонансного тока I0 = U / AC электрическая схема Идеальная комбинация элементов схемы R, L, C Эквивалентная эквивалентная схема, состоящая из Приемники энергии, как правило, являются по существу активной индукцией (например, электродвигатели).
Такой приемник может быть представлен двумя простейшими эквивалентными цепями, состоящими из двух элементов схемы R и L: а) напряжение последовательно (рис. 53а) и б) параллельные стороны треугольника тока Разделите на U, чтобы получить новый треугольник, похожий на исходный треугольник.
Но его стороны являются проводящими: полный Y, активный-G, реакция-B (рисунок 55b).
Треугольники со сторонами Y, G, B называются треугольниками проводимости. Отношения продолжаются от треугольника проводимости. Любой, у кого есть идея векторной диаграммы, заметит, что треугольник напряжения прямоугольника, отражающий общее напряжение цепи, напряжение сопротивления и напряжение реактивного сопротивления, очень хорошо виден.
Решение задач | Лекции |
Расчёт найти определения | Учебник методические указания |
Согласно теореме Пифагора о напряжении, связь между этими напряжениями (между общим напряжением цепи и напряжением этой секции) Напряжение Если следующий шаг делит эти значения напряжения на ток (один и тот же ток протекает через все части последовательной цепи), тогда значение сопротивления получается в соответствии с законом Ома.
- То есть мы можем говорить о прямоугольном прямоугольнике сопротивления: согласно теореме Пифагора мы устанавливаем взаимосвязь между сопротивлением цепи и реактивным сопротивлением аналогичным образом (как в случае напряжения). Связь выражается как: Общее сопротивление цепи Затем подайте ток на сопротивление. Фактически, увеличивайте каждую сторону прямоугольного треугольника определенное количество раз.
В результате получается прямоугольный треугольник емкости: силовой треугольник Активная мощность, выделяемая активным сопротивлением цепи, связанной с необратимым преобразованием электрической энергии (преобразование в тепло, выполнение работ на оборудовании), составляет Электрическая мощность в катушке и конденсаторе явно связана с реактивной мощностью, участвующей в обратимом преобразовании энергии), и вся электрическая мощность подается в электрическую установку.
Активная мощность измеряется в ваттах (Вт), реактивная мощность измеряется в вар (VAR — реактивная мощность в вольт-амперах), а общая мощность измеряется в ВА (вольт-амперах). По теореме Пифагора мы имеем право написать: Обратите внимание, что силовой треугольник здесь имеет угол фи, и его косинус может быть легко определен в первую очередь по активной мощности и кажущейся мощности.
Косинус этого угла (косинус фи) называется коэффициентом мощности. Это указывает, какая часть общей мощности будет потеряна и не будет возвращена в сеть после завершения полезных работ по электромонтажу.
Образовательный сайт для студентов и школьников
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Читайте также: