Как сделать соединение шпилькой в инвентаре
Соединения шпилькой применяются в тех случаях, когда в конструкции нет места для размещения головок болтов либо когда одна из соединяемых деталей имеет значительную толщину и нецелесообразно сверлить глубокие отверстия для установки болтов большой длины. Кроме экономии в габаритах, соединения шпилькой облегчают вес конструкции.
Соединение шпилькой — это узел, состоящий из шпильки, гайки, шайбы и скрепляемых деталей. В одной из соединяемых деталей сверлят глухое отверстие-гнездо, в котором нарезают резьбу. Во второй скрепляемой детали выполняют сквозное отверстие диаметром, несколько большим диаметра шпильки (« 1,1 of, где d — диаметр шпильки). Шпилька одним резьбовым концом завинчивается в резьбовое отверстие, а на верхний ее резьбовой конец свободно надевается скрепляемая деталь. На выступающий конец шпильки надевается шайба и навинчивается гайка. Глубина глухого отверстия должна быть несколько больше, чем длина завинчиваемого конца шпильки, т.е. не допускается упирание конца шпильки в дно отверстия.
На рисунке 277, а представлено упрошенное изображение соединения шпилькой с одинаковыми номинальными диаметрами резьбы и гладкой части и приведены условные соотношения, по которым оно вычерчивается.
Для шпилек, диаметр стержня которых менее 2 мм, применяется условное изображение в сечениях (рис. 277, б).
Длина резьбового конца принимается равной ,25d и 2d, в зависимости от материала детали, в которой нарезана резьба.
При упрошенном изображении соединения:
- • резьбу показывают на всей длине стержня;
- • шпильку изображают без фасок;
- • границу резьбы показывают только на посадочном конце;
- • не чертят шайбу.
На изображении линия раздела скрепляемых деталей должна совпадать с границей резьбы ввинчиваемого резьбового конца шпильки. На сборочных чертежах допускается изображать резьбу до конца гнезда, несмотря на то, что кроме сбега резьбы, равного 2Р, остается недо- рез резьбы, равный 4Р. На чертежах шпилечного соединения указывают три размера: диаметр резьбы, длину шпильки и диаметр отверстия в скрепляемой детали.
Винты применяются для неподвижного скрепления двух деталей (крышка к корпусу) или для предотвращения смещения одной детали относительно другой (шкив и вал).
Винтовое соединение — это узел, состоящий из винта и скрепляемых деталей (рис. 278). В детали, к которой производится крепление, высверливается гнездо, в котором нарезается резьба. В присоединяемой детали сверлят отверстие диаметром, несколько большим диаметра винта (1,1 d, где d — диаметр винта). Винт свободно проходит через присоединяемую деталь и ввинчивается в деталь крепления.
На рисунке 278 показано упрощенное изображение винтовых соединений. Коническая головка винта устанавливается в специальном раззенкованном отверстии в детали (рис. 278, б).
Условности, принятые при вычерчивании винтового соединения:
- • линии раздела соединяемых деталей должны быть ниже границы резьбы винта приблизительно на 3Р
- • шлиц изображается одной линией, если головка винта менее 12 мм, причем, если шлиц винта совпадает на вертикальной плоскости проекций с вертикальной осевой линией, то на горизонтальной плоскости проекций шлиц располагается под углом 45°;
- • длина гнезда под винт в детали принимается равной (2d + 6) + 3Р, где 3Р — запас под недовинчивание винта.
На чертеже винтового соединения указываются три размера: диаметр, длина винта и диаметр отверстия в верхней скрепляемой детали.
Если диаметр стержня винта меньше 2 мм, применяется условное изображение винтовых соединений (рис. 279).
На рис. 117 приведены основные конструкции резьбовых шпилек. Конструкции жесткой шпильки (рис. 117, I) со стержнем диаметром, равным диаметру резьбы, применяются только для коротких шпилек. К недостаткам такой шпильки можно отнести: жесткость, невыгодность по массе, затруднительность применения высокопроизводительных способов накатывания, фрезерования и шлифования резьбы (для точных резьб) и т. д. Часто применяют облегченные шпильки (рис. 117, II, III) с уменьшенным диаметром стержня, равным внутреннему диаметру резьбы или меньшим его (в среднем диаметр стержня делают равным 0,6—0,8 наружного диаметра резьбы). Их преимущества заключаются в равнопрочности шпильки в нарезной и гладкой частях, податливости, меньшей массе, возможности применения высокопроизводительных способов изготовления резьбы и т. д.
Гладкий поясок (а) у навертного конца шпильки (рис. 117, II), применявшийся в ранних конструкциях облегченных шпилек, сейчас обычно не делают; нарезной конец шпильки переводят плавной галтелью непосредственно в стержень (рис. 117, III). Устранение пояска значительно облегчает изготовление резьбы, которая в данном случае может быть нарезана напроход.
Посадочный размер шпильки в корпус зависит от материала корпуса (рис. 118, I—IV). На практике в ответственных соединениях глубину ввертывания делают значительно большей, чем указано на рис. 118.
При ввертывании в корпуса из хрупких (серого чугуна) или мягких (алюминиевого, магниевого, цинкового сплавов и т. д.) материалов применяют крупные резьбы (минимальный шаг резьбы 1,25—1,5 мм). Для навертного конца шпильки (под гайку) могут быть применены (для шпилек большого диаметра) мелкие резьбы.
Во избежание ошибок при ввертывании шпилек в тех случаях, когда резьбы (и формы) ввертного и навертного концов шпилек одинаковы (рис. 119, I), ввертной конец метят, например, закруглением его торца (рис. 119, II), углублениями (рис. 119, III, IV) и т. д. Лучше всего предупредить возможность ошибок конструктивно: применением на ввертном и на вертном концах резьб различного шага или диаметра.
Способ ввертывания шпилек существенно влияет на прочность соединения. Применяют три способа ввертывания шпилек в корпуса:
1) с упором шпильки в торец корпуса (рис. 120, I);
2) с упором конца шпильки в днище (рис. 120, II, III) или в последние витки нарезного отверстия корпуса (рис. 120, IV);
3) с торможением шпильки в отверстии применением посадок с натягом (рис. 120, V или самостопорящейся резьбы (рис. 120, VI).
При ввертывании по первому способу в теле шпильки возникают растягивающие напряжения (максимальные у первых витков и уменьшающиеся по направлению к последним виткам). В материале корпуса создаются сжимающие напряжения с примерно таким же законом изменения вдоль оси соединения. При предварительной затяжке такого соединения в шпильке возникают дополнительные напряжения растяжения, а в корпусе — дополнительные напряжения сжатия (от действия притягиваемой детали). При нагружении соединения растягивающей силой в шпильке увеличиваются еще больше напряжения растяжения. Напряжения сжатия в корпусе уменьшаются в результате уменьшения силы прижатия детали и появления растягивающих напряжений.
При ввертывании шпильки по второму способу в теле шпильки возникают сжимающие напряжения (максимальные у конца шпильки и убывающие по направлению к первым виткам). В материале корпуса создаются растягивающие напряжения с примерно таким же законом изменения вдоль оси соединения. При предварительной затяжке такого соединения у первых витков шпильки создаются растягивающие напряжения: сжимающие напряжения у конца шпильки несколько уменьшаются. В материале корпуса под действием притягиваемой детали возникают напряжения сжатия, а напряжения растяжения у днища отверстия ослабевают.
При нагружении соединения рабочей растягивающей силой напряжения растяжения у первых витков шпильки увеличиваются Напряжения сжатия, возникшие в материале корпуса при предварительной затяжке, уменьшаются в результате отхода притягиваемой детали. Зато напряжения растяжения у днища отверстия увеличиваются.
Следовательно, при первом способе ввертывания рабочие напряжения в шпильке больше, а рабочие напряжения в корпусе меньше, чем при втором способе. Таким образом, первый способ более подходит для корпусов из низкопрочных материалов (алюминиевых и магниевых сплавов), второй способ — для корпусов из высокопрочных материалов (стали).
Поскольку шпильки применяют в основном в корпусах из легких сплавов, первый способ более распространен, чем второй.
При третьем способе ввертывания ни в теле шпильки, ни в материале корпуса не возникает существенных дополнительных напряжений. Напряжения сжатия в теле шпильки и растяжения в материале корпуса, обязанные натягу в резьбе, при применяемых величинах натяга незначительны. Благодаря отсутствию дополнительных напряжений этот способ наиболее выгоден по прочности.
В отличие от способа ввертывания шпилек до упора в торец корпуса, точно фиксирующего осевое положение шпильки, способ завертывания по посадке с натягом требует контроля глубины ввертывания для получения заданной высоты выступания навертного конца шпильки над притягиваемой деталью.
Способ установки шпильки на конической резьбе (рис. 120, VI) по прочности равноценен способу крепления за счет натяга, но применим лишь в случаях, когда допустимы некоторые колебания длины свободного конца шпильки.
В тех случаях, когда это позволяет конфигурация корпуса, ввертный конец шпильки дополнительно крепят гайкой (рис. 121, I), что увеличивает прочность соединения. Применяют также способы затяжки конца шпилек гайками (рис. 121, II, III) по типу болтового соединения.
На рис. 122, I—VIII показаны конструкции шпилек, завертываемых с упором в торец корпуса.
Наиболее приспособлен для механизированной сборки способ завертывания шпильки за гладкий поясок, примыкающий к навертному (рис. 122, VII) или (лучше) к ввертному концу (рис. 122, VIII). Завертывание производится ключами (или шпильковертами) с эксцентриковыми зажимами или с самозатягивающимися роликами (по типу роликовых колес свободного хода).
В этом случае на шпильках необходимо предусмотреть цилиндрические участки (а), длина которых должна быть согласована с размерами головки шпильковерта.
Способы увеличения сопротивления усталости узла установки шпильки в соединениях, подверженных повышенным циклическим нагрузкам. сводятся к увеличению длины нарезной части шпильки (рис. 124, I), введению разгружающих выточек и шеек (рис. 124, II—IV) на участках перехода от резьбы к гладкой части стержня, введению разгружающих выточек на корпусе (рис. 124, V), погружению резьбового соединения в корпус (рис. 124, VI). Наиболее действенный, но не всегда применимый по габаритным условиям способ — увеличение диаметра резьбы (рис. 124, VII).
Во избежание самоотвертывания шпильки устанавливают в корпусе по посадке с натягом, а часто еще дополнительно стопорят.
На рис. 125 показаны некоторые способы стопорения шпилек в корпусе. На рис. 125, I изображен способ стопорения обжимом материала корпуса вокруг шпильки кольцевой оправкой. В конструкции на рис. 125, II стопорение достигается введением в нарезное гнездо вкладки из упругого материала (нейлона и т. п.), создающей натяг в соединении.
В конструкции на рис. 125, III натяг в резьбе достигается разделением резьбы шпильки на два пояса, один из которых слегка осажен относительно другого. На рис. 125, IV показана самоконтрящаяся шпилька, в разрезной ввертный конец которой установлен конический стержень (а). На последних стадиях ввертывания конус, упираясь в днище гнезда, разжимает разрезной конец шпильки, создавая натяг в соединении. Самоконтрящаяся шпилька на рис. 125, V предназначена для установки в корпуса из пластичных металлов. Ввертная резьба отделена от гладкого цилиндрического пояска выточкой; при завертывании упорный буртик шпильки, сминая первые витки резьбы, загоняет материал корпуса в выточку, образуя кольцевой замок вокруг шпильки. Тот же эффект постигается приданием упорному буртику конической формы.
При ввертывании шпилек в корпуса из мягких металлов следует учитывать пластическую деформацию металла под упорным буртиком шпильки, сопровождающуюся вспучиванием металла и образованием вокруг шпильки кольцевого валика (рис. 126, I). Для устранения этого явления и обеспечения плотного прилегания стягиваемых поверхностей нарезное гнездо корпуса снабжают фаской (рис. 126, II) или выточкой (рис. 126, III). Иногда фаски делают одновременно в корпусе и притягиваемой детали (рис. 126, IV).
При ввертывании шпилек (особенно по посадке с натягом) в глухие нарезные гнезда следует учитывать, что в замкнутом пространстве гнезда воздух сжимается. Это явление может оказаться опасным, если учесть, что удельный объем воздуха резко возрастает от нагрева при сжатии. Известны случаи, когда бобышки гнезд разрывались под давлением сжатого в гнезде воздуха.
В целях устранения этого явления в бобышках выполняют отверстия для выхода воздуха (рис. 127, I, II). Иногда воздух выходит через канавки (рис. 127, III) или отверстия в теле шпильки (рис. 127, IV) (при коротких шпильках). Применение последних двух способов (рис. 127, III, IV) нежелательно, так как они ослабляют шпильки.
Иногда увеличивают объем остающегося после завертывания шпильки глухого пространства изменением глубины нарезного отверстия или с помощью выборок в торце шпильки (рис. 127, V). Объем определяют с учетом термодинамических законов так, чтобы при завертывании не возникали опасные давления.
На рис. 128, VI изображен способ одновременного стопорения футорки и шпильки. Разрезные концы футорки после нарезания внутренней резьбы подгибают к центру, а затем нарезают наружную резьбу. При завертывании конец шпильки, надвигаясь на коническую часть резьбы, разжимает разрезные концы, благодаря чему создается натяг как во внутренней, так и во внешней резьбе футорки.
На рис. 128, VII представлена самоврезающаяся футорка для установки в корпусах из мягких материалов (в том числе из пластиков). В конструкции на рис. 128, VIII футорке придан вид витой пружины ромбического профиля; витки заходят одновременно во впадины резьбы в корпусе и на шпильки. Эта конструкция позволяет равномерно распределить нагрузку между витками резьбы.
В некоторых случаях требуется ввести жесткую поперечную связь между корпусом и притягиваемой деталью, например, для восприятия действующих на соединение сдвигающих сил или для точной фиксации притягиваемой детали относительно корпуса. Помимо известного способа фиксации с помощью установочных (контрольных) штифтов, применяют способ фиксации установочными элементами, включенными в конструкцию шпильки. Эти элементы могут быть выполнены на шпильках в виде центрирующих поясков, входящих в точно обработанные гнезда в корпусе и в притягиваемой детали (рис. 129, I, II).
При этом способе трудная задача — одновременное завертывание шпильки в корпус и посадка центрирующего пояска в корпус — обычно решается применением посадок с зазором для ввертного конца шпильки. Лучше конструкция, при которой центрирующий элемент выполнен отдельно в виде втулки, устанавливаемой концентрично со шпилькой (рис. 129, III, IV).
На рис. 129, V, VI показаны случаи одновременной фиксации двух притягиваемых деталей относительно друг друга и относительно корпуса.
Соединения на шпильках, как и всякие резьбовые соединения, подвергают при сборке предварительной затяжке, влияющей па работоспособность и герметичность узла. Силу предварительной затяжки определяют расчетом или экспериментально. Она зависит от материала стягиваемых деталей, соотношения податливости шпильки и стягиваемых деталей, условий работы стыка, требуемой степени его герметичности и, наконец, от рабочей температуры соединения.
В ответственных соединениях силу предварительной затяжки строго контролируют. Затяжку производят динамометрическими ключами. Регламентируют также порядок затяжки отдельных шпилек в многошпилечных соединениях; затяжку обычно производят в два приема (предварительно и окончательно) с соблюдением в каждом случае определьного порядка затяжки.
При затяжке длинных податливых шпилек возникает опасность скручивания их моментом сил трения в резьбе. При этом в теле шпильки возникают нежелательные, иногда значительные напряжения, причем динамометрическим ключом будет регистрироваться момент, скручивающий шпильку, а не сила затяжки.
Концы длинных шпилек после центрирования в корпусе часто отклоняются от своего номинального положения (иногда настолько, что не представляется возможным надеть на них притягиваемую деталь). Сборщики прибегают в таких случаях к правке шпилек по месту — способу, который никак нельзя рекомендовать, потому что при этом в теле шпильки возникают дополнительные напряжения.
В поисках рационального решения используют несколько путей:
— первый путь — соблюдение строгой перпендикулярности осей нарезных отверстий под шпильки относительно торца корпуса, то же — для отверстий под шпильки в притягиваемой детали; соблюдение строгой прямолинейности шпилек и параллельности среднего диаметра резьбы шпилек относительно оси шпилек;
— второй путь — увеличение податливости шпилек и применение посадок с зазором для резьбовых деталей (с последующим их стопорением каким-нибудь способом).
Однако эти способы не исключают необходимости центрирования шпильки, а, наоборот, усиливают эту необходимость. Их ценность заключается в том, что они автоматически, без вмешательства сборщика, устанавливают шпильки на их место при надевании притягиваемой детали (или при завертывании гайки). Если упругие деформации шпилек при этом невелики, то указанные способы можно считать приемлемыми, как облегчающие сборку.
Как и для крепежных деталей всех видов, в тяжелонагруженных шпилечных соединениях целесообразно устанавливать навертные гайки на сферических опорных поверхностях (рис. 135, IIV), обеспечивающих самоустановку гаек и уменьшающих изгиб стержня шпильки.
При сборке соединений с помощью шпилек прежде всего необходимо обеспечить надежное и плотное их завинчивание в тело одной из соединяемых деталей. Завинчивание должно производиться без перекосов и изгибания шпилек.
В зависимости от требуемой точности и назначения соединений применяют два типа шпилек:
Для ответственных соединений употребляются шпильки с выступом. Выступ создает дополнительный упор на сбеге резьбы и одновременно является уплотняющим элементом. При такой конструкции конец шпильки свободно ввинчивается в отверстие вплоть до выступа (буртика), после чего упирается в тело детали и создает необходимый натяг резьбы, что предохраняет шпильку от самоотвинчивания.
Для менее ответственных сборок используются гладкие шпильки, без буртика, но с постепенным сбегом резьбы и увеличением диаметра нарезки, благодаря чему обеспечивается натяг при ввинчивании шпильки.
Обязательным условием сборки является перпендикулярность оси шпильки к плоскости детали. Выполнение этого требования зависит от точности обработки отверстия и правильности нарезания резьбы как и отверстии, так и на шпильке. Поэтому сверление отверстий под резьбу желательно производить по кондукторам, чтобы избежать увода сверла, а при вырезке резьбы в отверстии следить за строго перпендикулярным положением метчика. Нарушение указанных требований приведет к перекосам, и шпилька после ввертывания займет неправильное положение, тем самым станет невозможной дальнейшая сборка соединения. Перпендикулярность завернутой шпильки проверяется обычным металлическим угольником.
Перед завертыванием шпильки сборщик должен обратить внимание на соответствие резьб на шпильке и в отверстии, для чего в некоторых случаях нелишне отверстие очистить от оставшейся стружки, прокалибровать его метчиком и затем проверить пробкой, а резьбу шпильки соответственно проверить резьбовым кольцом. Далее, надо смазать резьбу, после чего можно выполнять операцию завинчивания. Завинчивание можно производить накидным слесарным ключом, при помощи контргайки, газовым ключом, специальным приспособлением и другими средствами. В настоящее время на заводах не только массового, но и серийного производства для завинчивания шпилек широко применяются одноместные и многоместные шпильковерты электрического, пневматического и гидравлического действия.
Наиболее распространенными причинами брака при сборке с помощью шпилек являются:
Недостаточно плотная посадка шпильки в резьбовом отверстии. В данном случае шпильку надлежит заменить новой, более полной.
Поломка завинчиваемых шпилек. Удаление заломанных концов из отверстий производится различными способами, а именно:
высверливанием тела заломанного стержня; высверливанием отверстия в заломанном конце и забиванием в это отверстие ребристого стержня;
применением электроискрового метода (преимущественно для закаленных материалов, как, например, части сломанных и оставленных в отверстии инструментов) и другими способами.
Внимание покупателей подшипников
Сегодня строительная область предоставляет широкий выбор всевозможных крепежей и методов совмещения различных материалов. Но какие есть способы соединения металлических изделий, знают далеко не все, хотя эта информация может очень пригодиться, ведь сферы, где это актуально, многочисленны и разнообразны.
В нашей статье мы представили обзор основных способов, с помощью которых соединяют детали из металла, указав их ключевые особенности. Также перечислили главные крепежные изделия, которые применяются для этой цели, поэтому информация вас ожидает крайне полезная.
Разновидности крепежных изделий для соединения металла
Для соединения изделий друг с другом используется металлический крепеж, представленный на рынке в широком ассортименте. Крепежные элементы имеют разные размеры, форму и назначение. Чаще всего детали соединяют винтами, болтами, гайками, саморезами, шурупами, анкерами, заклепками, шпильками, шайбами и т. п.
1. Болт.
Одним из способов соединения металлических изделий является посредством болтов – стержней с наружной резьбой и четырех- или шестигранной головкой. Для соединения требуется гайка или отверстие с внутренней резьбой. Болт внешне напоминает винт, оба крепежных элемента широко применяются в машиностроении, строительстве и пр.
Различаются они по способу работы:
- болт проходит через соединяемые элементы насквозь, фиксируется гайкой или гаечным ключом;
- винт вкручивается в деталь с резьбой с помощью отвертки или торцевого ключа.
В отличие от второго, первый не прокручивается внутрь соединяемых элементов.
Рекомендуем статьи по металлообработке
2. Саморезы.
Для соединения деревянных деталей часто используются саморезы:
- крепежными элементами с мелкой резьбой соединяют металлические заготовки небольшой толщины с деревянными или пластмассовыми деталями;
- саморезы с крупной резьбой предназначены для фиксации деревянных деталей.
Острый наконечник, выполненный в форме сверла, самостоятельно проделывает отверстия в соединяемых заготовках.
3. Гайка.
Еще одним способом соединения деталей из металла является с помощью гаек – крепежных элементов с отверстием и внутренней резьбой. Используются в паре с болтами. Гайки различаются по форме (шестигранные, круглые с насечками, квадратные, T-образные, с выступами для пальцев и т. п.), а также по прочности.
4. Шуруп.
Этот крепежный элемент представляет собой стержень с наружной резьбой, острием конической формы и головкой. Способ соединения металла между собой с помощью шурупов заключается во вкручивании крепежа в готовое отверстие или мягкий материал (пластмассу, дерево). В этом заключается разница между ними и саморезами. Они менее универсальны по сравнению с последними, так как имеют меньшую высоту и шаг резьбы. Востребован этот вид крепежных изделий в строительных и отделочных работах.
5. Анкер.
Анкер крепится к опорному основанию и удерживает нужный элемент. Крепеж имеет две части:
- нераспорную, которая не участвует непосредственно в фиксации конструкций;
- распорную (рабочую), с изменяемыми размерами.
Помимо основных частей, может иметь манжету – кайму, препятствующую проникновению внутрь основания или фиксируемой конструкции. Анкеры используют для соединения металлических изделий из листовых материалов, а также для крепления тяжеловесных конструкций и фундамента.
6. Заклепки.
Делятся на два основных вида:
- Вытяжные, состоящие из алюминиевой головки и стержня из оцинкованной стали. Они предназначены для неразрывной фиксации двух или более металлических элементов. При работе с ними используются механические инструменты.
- Резьбовые заклепки широко применяются в машиностроении и электронике. На стержень этого крепежного изделия нанесена резьба, поэтому соединяемые с его помощью детали можно при необходимости разобрать.
7. Шпилька.
Это цилиндрический стержень без головки с резьбой по всей длине или только на концах. К такому способу соединения металлических изделий прибегают при отсутствии резьбы у фиксируемых деталей. Используется в паре с гайкой, может быть дополнен шайбой. Последняя представляет собой круглую пластинку, подкладываемую под гайку и повышающую прочность крепления, предотвращающую деформацию соединяемых заготовок. Это достигается за счет увеличения прижимной поверхности скрепляемых деталей.
С помощью шпилек скрепляют любые изделия и конструкции, включая высоконагруженные. Преимущество этого способа крепления металлических элементов заключается в том, что для его применения не требуются особые навыки.
В зависимости от наличия резьбы крепежные элементы делятся на:
- метрические, представленные винтами, болтами, гайками и шпильками;
- неметрические (приспособленные), представленные гвоздями, анкерами и т. п.
В зависимости от области использования они делятся на:
- высокопрочные резьбовые крепежи;
- элементы массового использования;
- изделия для безударной и/или односторонней фиксации;
- крепежи, предназначенные для герметизации изделий;
- детали, предназначенные для соединения полимерных композитных материалов и т. п.
Это условная классификация, поскольку крепежные изделия могут одновременно относиться к нескольким группам.
Рекомендации по выбору крепежа для соединения металлических изделий
Различные способы соединения металлических изделий используются в самых различных сферах промышленности и производства: от создания электронных устройств до строительства. После обработки специальными составами, повышающими их прочность и антикоррозионные свойства, крепежные элементы подходят для эксплуатации в агрессивной среде, в условиях повышенной влажности.
Срок службы готового изделия или конструкции зависит в том числе и от используемых крепежных элементов, поэтому при их выборе следует обратить внимание на следующее:
- прочность крепежа должна быть выше прочности соединяемых заготовок;
- высокая герметичность, не зависящая от того, на каком объекте используют тот или иной крепеж и/или способ соединения металлических изделий;
- качественные материалы, благодаря которым достигается высокая надежность и безопасность готовой конструкции;
- тип и диаметр крепежа выбирается в соответствии с предполагаемым характером воздействия (поперечным или продольным, статичным или динамическим).
6 способов соединения металлических изделий
Разные способы соединения металлических изделий имеют свои достоинства и недостатки. При выборе того или иного варианта необходимо, в первую очередь, исходить из предполагаемых условий эксплуатации будущей конструкции, а во вторую – из характеристик крепежных элементов.
1. Спайка.
Технологически этот способ соединения деталей из металла схож со сваркой, разница заключается в плавящемся материале:
- при спайке плавится присадочная проволока;
- при сварке – сам материал заготовки.
Спайка отличается меньшей надежностью по сравнению со сваркой.
Для соединения алюминиевых деталей, к примеру, велосипедных рам, больше подходит сварка, поскольку в данном случае требуются прочные сварные соединения.
Учитывая, что большая часть элементов велосипедной рамы изготовлена из алюминия, то сложностей при сварке не возникнет, главное, правильно выбрать технологию сваривания. Шов должен быть качественным и высокопрочным, устойчивым к деформациям и механическому воздействию.
Производители выпускают трековые велосипеды для скоростных гонок и шоссе, используемые на ровной поверхности. Для них важно, чтобы масса велосипеда была меньше, это достигается за счет использования при изготовлении рам трубок меньшего диаметра.
Такое решение приводит к сложностям при применении сварки как способа соединения металлических деталей. Высокая температура может стать причиной появлений трещин и деформации стальных элементов рамы. Вместо сварки в таком случае использовали спайку.
Хотя шов и получается более прочным, он все равно уступает по качеству сварным соединениям. Современные велосипедные рамы изготавливают из карбона, поэтому необходимость использования того или иного способа крепления металлических элементов либо полностью отсутствует, либо сводится к минимуму.
2. Склеивание.
Склеивание как способ соединения металлических изделий подходит для материалов, которые плохо поддаются сварке. Речь идет о таких металлах, как титан или магний. Во время склеивания мастера сталкиваются со следующими сложностями:
- склеиваемые поверхности должны быть точечно подготовлены к обработке;
- при склеивании внахлест требуется подгонка;
- для соединения характерна невысокая прочность;
- нельзя выполнять работу в несколько приемов.
Для повышения прочности крепления заготовок используют комбинированные способы, такие как заклепочно-клееные и сварочно-клееные.
3. Сварка.
Наиболее надежным способом соединения металлических изделий друг с другом считается сварка. Для фиксации элементов используют следующие ее виды:
- газовую ацетиленокислородную;
- контактную;
- электродуговую;
- электроннолучевую;
- лазерную;
- холодную.
При газовой сварке края соединяемых заготовок расплавляют в пламени кислородно-ацетиленовой смеси. Таким образом сваривают малоуглеродистые и низколегированные стали. Недостаток способа заключается в том, что сварной шов получается пористым, во время обработки из-за воздействия кислорода подвергается окислению, что отрицательно сказывается на его качестве.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Во время контактной сварки края соединяемых заготовок плотно прижимаются друг к другу и нагреваются за счет прохождения через них тока большой силы. Используется для соединения небольших по площади изделий, делится на шовную и точечную.
Электроды для электровакуумных изделий изготавливают при помощи точечной сварки. Крепление элементов друг к другу производится за счет импульсного тока, при этом изменяются такие параметры обработки, как продолжительность и сила воздействия, а также давление в точке сварки. Правильный подбор параметров позволяет соединять различные по типу и форме металлические заготовки, к примеру, вольфрамовую нить и никелевую фольгу.
4. Заклепывание.
Несмотря на широкое распространение сварки, заклепывание по-прежнему продолжает применяться как один из способов соединения металлических изделий. Его основной недостаток заключается в том, что шов может быть выполнен только внахлест. Однако он менее прочный, поскольку со временем заклепки расшатываются, а сверление отверстий может привести к дополнительной деформации материала заготовки.
Тем не менее, этот способ фиксации металлических деталей применяется в самолето- и мостостроении. Он долговечен и безопасен для конструкции, зачастую к заклепыванию прибегают при невозможности использования сварки.
Этот способ соединения деталей из металла также используется в производстве техники, автомобилестроении, при ремонте транспортных средств, однако он вытесняется технологией точечной сварки.
По мере развития технологий сварка все больше заменяет другие способы крепления металлических деталей. Уже сегодня она используется при возведении мостов, в строительстве авиатехники.
5. Шпоночное соединение.
Шпонки используют как способ соединения таких металлических изделий, как вал с деталями, передающими вращение и колебание. Элементы могут иметь различную конструкцию: призматическую, клиновую, сегментную, тангенциальную. Крепежные детали образует два основных вида соединений:
- Ненапряженные, для создания которых используются призматические сегментные шпонки. Во время сборки не возникает предварительное напряжение.
- Напряженные, для создания которых используются тангенциальные и сегментные шпонки. Подходят для соединения деталей сложных конструкций, во время сборки возникает монтажное напряжение.
6. Зубчатое (шлицевое).
Этот способ соединения металлических изделий предполагает фиксацию элементов путем попадания выступающих зубьев на валу в специальные углубления в ступице.
Размеры крепежных элементов устанавливаются отраслевыми стандартами. Способ подходит для создания подвижных и неподвижных соединений.
В зависимости от жесткости фиксации выделяют три варианта: легкая, средняя, высокая. Отличаются друг от друга высотой и количеством зубцов, варьирующимся от 6 до 20 штук. Зубцы могут иметь различную форму:
- Треугольные подходят для соединения небольших валов неподвижных или с небольшим крутящим моментом. Этот вид крепежных элементов используется редко.
- Прямобочные. Этот вид изделий для соединения металлических деталей центрируют по внутреннему и наружному диаметру боковых граней.
- Эвольвентные – используют для крепления больших валов.
Назначение зубчатых соединений – передача крутящего момента. В основном, их используют в производстве электроинструментов.
Области применения различных способов соединения металлических изделий
Различные способы фиксации металлических элементов применяются в разных сферах промышленности, а также в быту. Их используют при производстве мебели, в строительстве, тяжелой промышленности и т. п.
Шпоночные и шлицевые крепления распространены в сферах создания электроинструментов, оборудования, в машиностроении. Без соединений с натягом невозможно изготовить валы зубчатых колец, червячные колеса. Пайка необходима для работы над электронным оборудованием, требующем высокой точности. С помощью заклепок соединяют тонколистовые металлы.
По мере развития технического прогресса появляются и новые способы соединения металлических изделий. Современная жизнь невозможна без различных машин и механизмов. Для того чтобы они служили дольше, необходимы надежные крепежные элементы. От качества крепежа зависят также форма готового изделия, качество его работы, риски возникновения аварийных и нештатных ситуаций на производствах и т. п.
В статье мы поговорили о видах и способах соединения металлических изделий и деталей. Прежде чем купить тот или иной крепежный элемент, следует его осмотреть на наличие дефектов. Деформированные в процессе работы детали можно использовать для наружных контуров металлических заготовок. Таким образом, возможна экономия на расходных материалах, но при этом без ущерба для качества готовой продукции.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Читайте также: