Как сделать систематику
Иерархия биологической систематики восьми основных таксономических рангов. Промежуточные категории не показаны.
Биологи́ческая система́тика — научная дисциплина, в задачи которой входит разработка принципов классификации живых организмов и практическое приложение этих принципов к построению системы. Под классификацией здесь понимается описание и размещение в системе всех существующих и вымерших организмов [1] .
Содержание
Цели и принципы систематики
Завершающим этапом работы систематика, отражающим его представления о некой группе живых организмов, является создание Естественной Системы. Предполагается, что эта система, с одной стороны, лежит в основе природных явлений, с другой стороны, является лишь этапом на пути научного исследования. В соответствии с принципом познавательной неисчерпаемости природы естественная система недостижима [2] .
Основные цели систематики:
- наименование (в том числе и описание) таксонов,
- диагностика (определение, то есть нахождение места в системе),
- экстраполяция, то есть предсказание признаков объекта, основывающееся на том, что он относится к тому или иному таксону. Например, если на основании строения зубов мы отнесли животное к отрядугрызунов, то можем предполагать, что у него имеется длинная слепая кишка и стопоходящие конечности, даже если нам неизвестны эти части тела.
Систематика всегда предполагает, что:
Эти предположения, лежащие в основе любой таксономической работы, можно назвать аксиомами систематики [1] .
Современные классификации живых организмов построены по иерархическому принципу. Различные уровни иерархии (ранги) имеют собственные названия (от высших к низшим): царство, тип или отдел, класс, отряд или порядок, семейство, род и, собственно, вид. Виды состоят уже из отдельных особей.
Принято, что любой конкретный организм должен последовательно принадлежать ко всем семи категориям. В сложных системах часто выделяют дополнительные категории, например, используя для этого приставки над- и под- (надкласс, подтип и т. п.). Каждый таксон должен иметь определённый ранг, то есть относиться к какой-либо таксономической категории.
Этот принцип построения системы получил название Линнеевской иерархии, по имени шведского натуралиста Карла Линнея, труды которого были положены в основу традиции современной научной систематики.
Сравнительно новым является понятие надцарства, или биологического домена. Оно было предложено в 1990 году Карлом Вёзе и ввело разделение всех биологических таксонов на три домена: 1) эукариоты (домен, объединивший все организмы, клетки которых содержат ядро); 2) бактерии; 3) археи.
История систематики
В 1172 году арабский философ Аверроэс сделал сокращённый перевод трудов Аристотеля на арабский язык. Его собственные комментарии были утеряны, но сам перевод дошёл до наших дней на латыни.
Большой вклад сделал швейцарский профессор Конрад Геснер (1516—1565).
Эпоха великих открытий позволила учёным существенно расширить знания о живой природе. В конце XVI — начале XVII веков начинается кропотливое изучение живого мира, вначале направленное на хорошо знакомые типы, постепенно расширившееся, пока, наконец, не сформировался достаточный объём знаний, составивший основу научной классификации. Использование этих знаний для классификации форм жизни стало долгом для многих известных медиков, таких как Иероним Фабриций (1537—1619), последователь Парацельса Педер Сёренсен [en] (1542—1602, известен также как Петрус Северинус), естествоиспытатель Уильям Гарвей (1578—1657), английский анатом Эдвард Тайсон (1649—1708). Свой вклад сделали энтомологи и первые микроскописты Марчелло Мальпиги (1628—1694), Ян Сваммердам (1637—1680) и Роберт Гук (1635—1702).
Линней
Порядок есть подразделение классов, вводимое для того, чтобы не разграничивать роды в числе большем, чем их легко может воспринять разум.
Карл Линней
К началу XVIII века наукой был накоплен большой объём биологических знаний, однако с точки зрения структурирования этих знаний биология существенным образом отставала от других естественных наук, активно развивавшихся в результате научной революции. Определяющим вкладом в устранении этого отставания стала деятельность шведского естествоиспытателя Карла Линнея (1707—1778), который определил и реализовал на практике основные положения научной систематики, что позволило биологии в достаточно короткие сроки стать полноценной наукой [4] .
После Линнея
В конце XVIII века Антуан Жюссьё ввёл категорию семейства, а в начале XIX века Жорж Кювье сформулировал понятие о типе животных. Вслед за этим категория, аналогичная типу, — отдел — была введена для растений.
…общность происхождения и есть та связь между организмами, которая раскрывается перед нами при помощи наших классификаций.
Это высказывание положило начало новой эпохе в истории систематики, эпохе филогенетической (то есть основанной на родстве организмов) систематики [1] .
Дарвин предположил, что наблюдаемая таксономическая структура, в частности, иерархия таксонов, связана с их происхождением друг от друга. Так возникла эволюционная систематика, ставящая во главу угла выяснение происхождения организмов, для чего используются как морфологические, так и эмбриологические и палеонтологические методы.
Наименование и описание таксонов
К началу XX века в систематике оформилось семь основных таксономических категорий:
- царство — regnum
- тип — phylum (у растений отдел — divisio)
- класс — classis
- отряд (у растений порядок) — ordo
- семейство — familia
- род — genus
- вид — species
Русское название | Международное наименование | Животные | Растения | Грибы | Бактерии | Археи |
---|---|---|---|---|---|---|
отряд A /порядок | ordo | -iformes, -ida | -ales | |||
подотряд A /подпорядок | subordo | + | -ineae | - | ||
инфраотряд A / infraordo | + | -aria | - | |||
парвотряд A (микротряд) | parvordo | + | - | |||
секция A | sectio | + | - | |||
subsectio | + | - | ||||
[5] / - | ||||||
надсемейство | suprafamilia | -oidea | -acea | - | ||
epifamilia | -oidae | - | ||||
семейство | familia | -idae | -aceae | |||
подсемейство | subfamilia | -inae | -oideae | - | ||
infrafamilia | -odd | + | - | |||
надтриба | supratribus | + | + | - | ||
триба | tribus | -ini | -eae | - | ||
подтриба | subtribus | -ina | -inae | - | ||
+ | - | |||||
род | genus | + | + | + | + | + |
подрод | subgenus | - | subgen., subg. | ? | - | - |
секция | sectio | - | sect. | ? | - | - |
подсекция | subsectio | - | subsect. | ? | - | - |
ряд (серия) | series | - | ser. | ? | - | - |
подряд (подсерия) | subseries | - | subser. | ? | - | - |
supraspecies | + | + | ? | ? | - | |
вид | species | + | + | + | + | + |
подвид | subspecies | subsp./ssp. | subsp./ssp. | subsp. (по крайней мере, для дрожжей) | - | - |
разновидность / вариетет | varietas | var. [6] | var. | var. | var. [6] | - |
подразновидность | subvarietas | - | subvar. | ? | ? | - |
форма | forma | - (морфа/форма?) | f. | ? | ? | - |
подформа | subforma | - | subf. | ? | ? | - |
- Жирным отмечены основные ранги. Плюсом отмечено, если таксон употребляется в классификации данного царства, но обозначения определённого нет.
- A — только в зоологии.
- В отряде Чешуекрылые выделяют несколько дополнительных промежуточных между подотрядом и надсемейством таксонов (например, англ.series , англ.group , англ.division ). См., например, таксоны Monotrysia и синонимии (то есть разных названий одного и того же таксона) и омонимии (то есть одного названия для разных таксонов), в настоящее время номенклатура регулируется номенклатурными кодексами, позволяющими деление на уровни (см. Ранг (биологическая систематика)),— отдельно для растений, животных и микроорганизмов. Во всех номенклатурных кодексах используются три основные принципа номенклатуры: приоритета, действительного обнародования и номенклатурного типа. Кроме того, названия всех таксонов должны даваться по-латыни (от латинских и греческихкорней либо от личных имён или народных названий), а название вида должно быть бинарным, то есть состоять из названия рода и видового эпитета. Например, латинское название картофеля — Solanum tuberosum L. (последнее слово обозначает автора названия — в данном случае это Карл Линней; в зоологии часто ставят ещё и год действительного обнародования).
Каждый таксон обязательно должен иметь ранг, то есть относиться к какой-либо из перечисленных категорий. Таким образом, ранг — это мера соответствия таксонов друг другу; например, семейство Капустные и семейство Кошачьи — сопоставимые категории. Нет, однако, общепринятого способа вычисления ранга, и поэтому разные систематики выделяют ранги по-разному [1] .
Диагностика таксонов
Под диагностикой понимают прежде всего составление таблиц для определения организмов (так называемых определительных ключей). Со времён Ж. Б. Ламарка наибольшее распространение получили дихотомические ключи, в которых каждый пункт (ступень) разделён на тезу и антитезу, снабжённые указаниями о том, к какой ступени нужно перейти дальше. Сейчас почти вся флора и фауна Земного шара охвачена определительными ключами.
Иерархия
Современные разработки
В настоящее время принято, чтобы классификация там, где это допустимо, следовала принципам эволюционизма.
Р. Сокэл и П. Снит в 1963 году основали так называемую численную (нумерическую) систематику, в которой сходство между таксонами определяется не на основании филогении, а на основании математического анализа максимально большого количества признаков, имеющих одинаковое значение (вес).
Домены — относительно новый способ классификации. Трёхдоменная система была предложена в 1990 году, однако до сих пор не принята окончательно. Большинство биологов принимает эту систему доменов, однако значительная часть продолжает использовать пятицарственное деление. Одной из главных особенностей трёхдоменного метода является разделение археев (Archaea) и бактерий (Bacteria), которые ранее были объединены в царство бактерий. Существует также малая часть учёных, добавляющих археев в виде шестого царства, но не признающих домены.
Сегодня систематика принадлежит к числу бурно развивающихся биологических наук, включая всё новые и новые методы: методы математической статистики, компьютерный анализ данных, сравнительный анализ ДНК и РНК, анализ ультраструктуры клеток и многие другие.
Систематика. Основы систематики организмов
- 7.1. Систематика как биологическая наука
- 7.2. Империя неклеточные организмы (Noncellulata). Царство вирусы (Virae)
7.1. Систематика как биологическая наука
Систематика – это наука о разнообразии организмов, определяющая их место в системе органического мира. Существует систематика животных, микроорганизмов, грибов, растений.
В задачи любой систематики входит выявление, описание, идентификация, классификация и группирование организмов (от древнейших и примитивных до современных и самых сложных) в систему, в которой было бы однозначно определено положение каждого таксона.
Со времени К. Линнея (XVIII в.) в науке господствовала система двух царств: растений (Plantae) и животных (Animalia). В XX в. с открытием вирусов, а также обнаружением ряда важных различий в процессах обмена веществ и ультраструктуре клетки у разных групп организмов привело к пересмотру устоявшихся взглядов. В настоящее время общая схема филогенетических (родственных) отношений между основными группами живых организмов выглядит следующим образом (рис. 7.1).
Рис. 7.1. Филогенетические отношения между основными группами живых организмов.
Империя неклеточные организмы (Noncellulata) – не имеют морфологически оформленной клетки. Империя включает одно царство вирусы (Virae).
Империя клеточные организмы (Сellulata) –имеют морфологически оформленную клетку. Включает две подимперии.
1. Подимперия доядерные (Procaryota) – не имеют морфологически оформленного ядра. Объединяет два царства:
а) Царство архебактерии (Archaebacteria) – в основе клеточных стенок кислые полисахариды (муреина нет);
б) Царство настоящие бактерии, или эубактерии (Eubacteria) – в основе клеточных стенок – муреин.
2. Подимперия ядерные, или эукариоты (Eucaryota) – имеют морфологически оформленное ядро. Подразделяется на четыре царства:
а) Царство протоктисты (Protoctista) – автотрофы или гетеротрофы; тело не расчленено на вегетативные органы; отсутствует стадия зародыша; гаплоидные или диплоидные организмы; включает водоросли и грибоподобные организмы.
б) Царство животные (Animalia) – гетеротрофы; питание путем заглатывания или всасывания; отсутствует плотная клеточная стенка; диплоидные организмы; имеется чередование ядерных фаз.
в) Царство грибы (Fungi, Mycota) – гетеротрофы; питание путем всасывания; имеется плотная клеточная стенка, в основе которой хитин; гаплоидные или дикарионтические организмы; тело не расчленено на органы и ткани.
г) Царство растения (Plantae) – автотрофы; питание за счет процесса аэробного фотосинтеза; имеется плотная клеточная стенка, в основе которой целлюлоза; характерно чередование полового (гаметофит) и бесполого поколения (спорофит) с преобладанием диплоидного поколения. К растениям относятся – отделы риниофиты и зостерофиллофиты (ныне вымершие), моховидные, хвощевидные, плауновидные, папоротниковидные, голосеменные и покрытосеменные.
До недавнего времени грибы, водоросли и высшие растения рассматривались в одном большом царстве растений. И, кроме того, среди растений существовало подразделение на две категории – низшие и высшие. К низшим относили: бактерии, грибы, лишайники и водоросли, к высшим: риниофиты, зостерофилловые, псилотовидные, моховидные, хвощевидные, плауновидные, папоротниковидные, голосеменные и покрытосеменные (цветковые).
Разделы систематики
Таксономические категории и таксоны, бинарная номенклатура.
Современная систематика подразделяется на несколько связанных между собой разделов:
- таксономия – теория и практика классификации организмов, при которой распределяется все множество вновь выявленных и уже известных организмов в соответствии с их сходством и различиями или предполагаемым родством по определенной системе соподчиненных категорий;
- номенклатура – вся совокупность названий таксонов;
- филогенетика – устанавливает родство организмов в историческом плане (филогения) и ход исторического развития мира живых организмов (филогенез) как в целом, так и для отдельных систематических групп.
Над видом располагаются род (genus), семейство (familia), порядок (ordo), подкласс (subclassis), класс (classis), отдел (divisio) и царство (regnum) (таблица).
Основные таксономические ранги систематики высших растений и примеры таксонов
Внутри вида могут быть выделены более мелкие систематические единицы: подвид (subspecies), разновидность (varietas), форма (forma); для культурных употребляется категория – сорт.
Таксон – это реально существовавшие или существующие группы организмов, отнесенные в процессе классификации к определенным таксономическим категориям.
Научные названия всех таксонов, относящихся к таксономическим категориям выше вида, состоят из одного латинского слова (униноминальны) и имеют определенные окончания, которые указывают ранг данного таксона (таблица). Название вида состоит из двух латинских слов (биноминальны). Первое слово – это родовое название, второе – видовой эпитет. Например, сосна лесная (обыкновенная) – Pinus sylvestris.
Правило давать видам растений двойные названия известно как бинарная номенклатура. Введена бинарная номенклатура Карлом Линнеем в1753 г.
Материалы для работы систематиков
Материалом для работы систематиков служат живые растения (или их части), а также растения, которые высушены или фиксированы тем или иным способом.
Обширные коллекции живых растений сосредоточены в ботанических садах. В Европе ботанические сады начали создаваться уже с XIV в.
Фиксируют растения и их части и в специальных жидких фиксаторах сложного состава (со спиртом или формалином). Используют зафиксированные таким образом растения и их части при анатомических, эмбриологических, цитологических и др. исследованиях.
Методы систематики
Сравнительно-морфологический метод (основной метод систематики) – основан на данных сравнительной морфологии и дает наибольшую информацию о родстве таксонов на уровне вида и рода; с помощью данного метода изучают макроструктуру организмов; метод не требует сложного оборудования.
Сравнительно-анатомический, эмбриологический и онтогенетический методы (варианты сравнительно-анатомического метода) – с их помощью изучают микроскопические структуры тканей, зародышевых мешков, особенности гаметогенеза, оплодотворения и развития зародыша, а также характер последующего развития и формирования отдельных органов растений; данные методы требуют совершенной техники (электронной и сканирующей микроскопии).
Сравнительно-цитологический и кариологический методы – позволяют анализировать признаки организмов на клеточном уровне, помогая устанавливать гибридную природу форм и изучать популяционную изменчивость видов.
Палинологический метод – использует данные палинологии (наука, изучающая строение оболочек спор и пыльцевых зерен растений) и позволяет, по хорошо сохраняющимся оболочкам спор и пыльцы, устанавливать возраст вымерших растений.
Эколого-генетический метод – связан с опытами по культуре растений; дает возможность вне зависимости от факторов природной среды изучать изменчивость, подвижность признаков и устанавливать границы фенотипической реакции таксона.
Гибридологический метод – основан на изучении гибридизации таксонов; важен при решении вопросов филогении и систематики.
Географический метод – дает возможность анализировать распространение таксонов и возможную динамику их ареалов (область географического распространения), а также изменчивость организмов, которая связана с географически меняющимися природными факторами.
Помимо указанных выше методов, в систематике используют иммунохимические и физиологические методы, а также данные энтомологии, археологии и лингвистики, которые дают информацию о насекомых вредителях и местах введения в культуру важнейших сельскохозяйственных растений.
7.2. Империя неклеточные организмы (Noncellulata). Царство вирусы (Virae)
Вирусы – это группа ультрамикроскопических облигатных внутриклеточных паразитов, которые размножаются только в клетках живых организмов. Открыты вирусы были в 1892 году русским ботаником Д.И. Ивановским. Данное открытие произошло во время изучения болезни табака, которая проявлялась в появлении пятен на листьях. Болезнь была вызвана вирусом табачной мозаики (рис. 7. 2. 1).
Рис. 7.2.1. Вирус табачной мозаики (А – электронная микрофотография, Б – модель).
Вирусная частица (вирион) состоит из нуклеиновой кислоты (ДНК или РНК), окруженной белковой оболочкой – капсидом, состоящим из капсомеров. Размеры вириона различных вирусов – от 15 до 400 нм (большинство видны лишь в электронный микроскоп).
Вирусы обладают следующими характерными особенностями:
- не имеют клеточного строения;
- не способны к росту и бинарному делению;
- не имеют собственных метаболических систем;
- содержат нуклеиновую кислоту только одного типа – ДНК или РНК;
- для их воспроизводства нужна только нуклеиновая кислота;
- используют рибосомы клетки-хозяина для образования собственных белков;
- не размножаются на искусственных питательных средах и могут существовать только в организме хозяина;
- не задерживаются бактериологическими фильтрами.
Кроме того, вирусы паразитируют только на определенных хозяевах (растениях, животных, человеке, микроорганизмах); не размножаются в почве, но могут долго сохраняться в ней, если условия исключают их инактивацию; по типу нуклеиновой кислоты, а также биологическим, химическим, физическим свойствам их разделяют на РНК-содержащие и ДНК-содержащие.
Вирусы микроорганизмов названы фагами. Так, существуют бактериофаги (вирусы бактерий), микофаги (вирусы грибов), цианофаги (вирусы цианобактерий). Фаги обычно имеют многогранную призматическую головку и отросток (рис. 7.2.2.).
Рис. 7.2.2. Модель фага.
Головка покрыта оболочкой из капсомеров и содержит внутри ДНК. Отросток представляет собой белковый стержень, покрытый чехлом из спирально расположенных капсомеров. Через отросток ДНК из головки фага переходит в клетку поражаемого микроорганизма. После попадания фага бактерия утрачивает способность к делению и начинает производить не вещества собственной клетки, а частицы бактериофага. В итоге клеточная стенка бактерии растворяется (лизируют), из нее выходят зрелые бактериофаги. Лизировать бактерии способен только активный фаг. Недостаточно активный фаг может существовать в клетке микроорганизма, не вызывая лизиса. При размножении пораженной бактерии возможен переход инфицированного начала в дочерние клетки. Фаги встречаются в воде, почве и других природных объектах. Некоторые фаги используют в генетической инженерии, в медицине для профилактики заболеваний.
Эпоха великих открытий позволила учёным существенно расширить знания о живой природе. В конце XVI — начале XVII веков начинается кропотливое изучение живого мира, вначале направленное на хорошо знакомые типы, постепенно расширившееся, пока, наконец, не сформировался достаточный объём знаний, составивший основу научной классификации. Использование этих знаний для классификации форм жизни стало долгом для многих известных медиков, таких как Иероним Фабриций (1537—1619, естествоиспытатель Уильям Гарвей (1578—1657), английский анатом Эдвард Тайсон (1649—1708). Свой вклад сделали энтомологи и первые микроскописты Марчелло Мальпиги (1628—1694), Ян Сваммердам (1637—1680) и Роберт Гук (1635—1702).
Линней
К началу XVIII века наукой был накоплен большой объём биологических знаний, однако с точки зрения структурирования этих знаний биология существенным образом отставала от других естественных наук, активно развивавшихся в результате научной революции. Определяющим вкладом в устранении этого отставания стала деятельность шведского естествоиспытателя Карла Линнея (1707—1778), который определил и реализовал на практике основные положения научной систематики, что позволило биологии в достаточно короткие сроки стать полноценной наукой [4] .
После Линнея
Дарвин предположил, что наблюдаемая таксономическая структура, в частности, иерархия таксонов, связана с их происхождением друг от друга. Так возникла эволюционная систематика, ставящая во главу угла выяснение происхождения организмов, для чего используются как морфологические, так и эмбриологические и палеонтологические методы.
Принципы современной систематики
В настоящее время принято, чтобы классификация там, где это допустимо, следовала принципам эволюционизма.
Р. Сокэл и П. Снит в 1963 году основали так называемую численную (нумерическую) систематику, в которой сходство между таксонами определяется не на основании филогении, а на основании математического анализа максимально большого количества признаков, имеющих одинаковое значение (вес).
Домены — относительно новый способ классификации. Трёхдоменная система изобретена в 1990 году, однако до сих пор не принята окончательно. Большинство биологов принимает эту систему доменов, однако значительная часть продолжает использовать пятицарственное деление. Одной из главных особенностей трёхдоменного метода является разделение археев (Archaea) и бактерий (Bacteria), которые ранее были объединены в царство бактерий. Существует также малая часть учёных, добавляющих археев в виде шестого царства, но не признающих домены.
Сегодня систематика принадлежит к числу бурно развивающихся биологических наук, включая всё новые и новые методы: методы математической статистики, компьютерный анализ данных, сравнительный анализ ДНК и РНК, анализ ультраструктуры клеток и многие другие.
Характеристики таксона
В качестве наиболее существенных характеристик (атрибутов) таксона в биологической систематике рассматривают диагноз, ранг и объём. По мере изменения классификации характеристики таксонов могут изменяться (в разных системах, например, таксоны одинакового объёма могут иметь разные диагнозы, или разные ранги, или же занимать в системе иное место).
Впрочем, многие современные приверженцы кладистики не определяют ранги для выделяемых ими таксонов и даже не приводят диагнозы, ограничиваясь [ построением кладограмм, дающих представление о филогении данных групп и их объёме
Объём таксона может быть объективно задан путём перечисления входящих в него таксонов более низкого ранга. С течением времени представления систематиков об объёме конкретного таксона могут меняться — как по причине изменения взглядов на филогению рассматриваемой группы, так и в связи с обнаружением новых видов.
В биологической систематике ранг (= таксономическая категория) — уровень в иерархически организованной системе живых организмов (например, класс, отряд,семейство). Несмотря на ряд проблем с использованием рангов, они продолжают применяться, поскольку именно на ранговом принципе основаны правила образования названий групп (таксонов) живых организмов, зафиксированные в номенклатурных кодексах.
Под диагнозом таксона в биологической систематике понимают список его существенных признаков, то есть признаков, характеризующих таксон в такой степени, чтобы можно было отграничить его от других таксонов (которые могут содержать данный таксон, или же сами содержаться в нём, или, наконец, вообще с ним не пересекаться).
8.Классификация и нуменлатура
Спонтанные мутации
В популяции бактерий без всякого экспериментального вмешательства регулярно возникают мутации; такие мутации называют спонтанными мутациями, а клетки, в которых они возникли,-спонтанными мутантами. Мутагенное действие аналогов оснований ДНК указывает на возможные причины спонтанных мутаций: вероятно, речь идет о случайных ошибках при включении нуклеотидов во время репликации ДНК-ошибках, вызванных таутомерным перемещением электронов в основании. Тимин, например, обычно находится в оксо-форме, в которой он образует водородные связи с аденином. Но если тимин во время спаривания оснований при репликации ДНК переходит в енольную форму, то он спаривается с гуанином. В результате в новой молекуле ДНК на том месте, где раньше находилась пара А-Т, появляется пара G-C.
Индуцированные мутации
Обрабатывая клетки мутагенными (вызывающими мутации) веществами, можно повысить частоту мутаций. В этом случае говорят об индукции мутаций, а полученные при этом клетки называют индуцированными мутантами. Мутагенами могут быть химические, физические или биологические агенты. Механизм их действия будет пояснен на ряде примеров.
Для мутаций класса 1, называемых также точечными мутациями, характерна высокая частота реверсии. В случае мутаций класса 2, к которым относятся также мутации со сдвигом рамки , ревер-танты редки, а после мутаций класса 3 (за некоторыми исключениями) ревертанты не появляются.
НАСЛЕДСТВЕННОСТЬ,передача сходства анатомич., физиол., биохимич. и др. свойств и особенностей организма от родителей к потомству (от одних поколений организмов к др.).
Характерные особенности
· Отсутствие четко оформленного ядра
· Наличие жгутиков, плазмид и газовых вакуолей
· Структуры, в которых происходит фотосинтез
· Формы размножения — бесполый способ, имеется псевдосексуальный процесс, в результате которого происходит лишь обмен генетической информацией, без увеличения числа клеток.
В природе встречается широкий спектр примеров взаимовыгодного симбиоза (мутуализм). От желудочных и кишечных бактерий, без которых было бы невозможно пищеварение, до растений (зачастую орхидеи), чьюпыльцу может распространять только один, определённый вид насекомых. Такие отношения успешны всегда, когда они увеличивают шансы обоих партнёров на выживание. Осуществляемые в ходе симбиоза действия или производимые вещества являются для партнёров существенными и незаменимыми. В обобщённом понимании такой симбиоз — промежуточное звено между взаимодействием и слиянием.
В более широком научном понимании симбиоз представляет собой любую форму взаимодействия между организмами разных видов, в том числе паразитизм — отношения, выгодные одному, но вредные другомусимбионту. Обоюдно выгодный вид симбиоза называют мутуализмом. Комменсализмом называют отношения, полезные одному, но безразличные другому симбионту, а аменсализмом — отношения, вредные одному, но безразличные другому.
Азотфикса́ция, или азотофиксация — фиксация молекулярного атмосферного азота, диазотрофия. Процесс восстановления молекулы азота и включения её в состав своей биомассы прокариотными микроорганизмами. Важнейший источник азота в биологическом круговороте. В наземных экосистемах азотфиксаторы локализуются в основном в почве.
Нитрификация — микробиологический процесс окисления аммиака до азотистой кислоты или её самой далее до азотной кислоты, что связано либо с получением энергии (хемосинтез, автотрофная нитрификация), либо с защитой от активных форм кислорода, образующихся при разложении пероксида водорода(гетеротрофная нитрификация).
В природе существуют несколько видов бактерий – одни приносят огромную пользу, помогая человеку. Вторые – этоболезнетворные бактерии.
Бактерии, приносящие пользу, играют незаменимую роль в повседневной жизни человека. Во-первых, такие бактерии используются при изготовлении кисломолочной продукции и сыров. Также бактерии используют при обработке шелка или кожи. Те же лекарственные препараты, на примере интерферона, изготавливаются на основе бактерий. В пищеварительном тракте травоядных млекопитающих также обитают полезные бактерии, которые помогают пищеварению.
Но не все бактерии полезны, существуют и так называемые болезнетворные бактерии, которые способны вызывать различные заболевания, как у людей, так и у животных. Бактерии могут вызвать такие заболевания, как туберкулез, ангина, отравления, гонорея. Очень часто благоприятные условия для бактерий могут вызвать целые эпидемии. Передаются такие бактерии воздушно-капельным путем, а также через раны, пищеварительный тракт.
Для борьбы с болезнетворными бактериями применяют антибиотики, прививки, бактериофаги. Также необходимо соблюдать гигиену и проводить профилактику различных заболеваний.
Васкулярные системы
Сердечно-сосудистая система — система органов, которая обеспечивает циркуляцию крови в организме человека иживотных. Благодаря циркуляции крови кислород, а также питательные вещества доставляются органам и тканям тела, ауглекислый газ, другие продукты метаболизма и отходы жизнедеятельности выводятся.
Циркуляция крови в сердечно-сосудистой системе у позвоночных животных и человека дополняется лимфооттоком от органов и тканей организма по системе сосудов, узлов и протоков лимфатической системы, впадающих в венозную систему в месте слияния подключичных вен.
В состав сердечно-сосудистой системы входит сердце — орган, который заставляет кровь двигаться, нагнетая её вкровеносные сосуды — полые трубки различного калибра, по которым она циркулирует.
Все функции кровеносной системы строго согласованы благодаря нервно-рефлекторной регуляции, что позволяет поддерживать гомеостаз в условиях постоянно изменяющихся условий внешней и внутренней среды.
Головной мозг позвоночных
Головно́й мозг (лат. cerebrum, др.-греч. ἐγκέφαλος) — часть центральной нервной системыподавляющего большинства хордовых, её головной конец; у позвоночных находится внутри черепа. В анатомической номенклатуре позвоночных, в том числе человека, мозг в целом чаще всего обозначается как encephalon — латинизированная форма греческого слова; изначально латинскоеcerebrum стало синонимом большого мозга (telencephalon).
Головной мозг состоит из большого числа нейронов, связанных между собой синаптическими связями. Взаимодействуя посредством этих связей, нейроны формируют сложные электрические импульсы, которые контролируют деятельность всего организма.
Несмотря на значительный прогресс в изучении головного мозга в последние годы, многое в его работе до сих пор остаётся загадкой. Функционирование отдельных клеток достаточно хорошо объяснено, однако понимание того, как в результате взаимодействия тысяч и миллионов нейронов мозг функционирует как целое, доступно лишь в очень упрощённом виде и требует дальнейших глубоких исследований.
По мнению большинства учёных, функции мозга включают обработку сенсорной информации, поступающей от органов чувств, планирование, принятие решений,координацию, управление движениями, положительные и отрицательные эмоции, внимание, память. Мозг человека выполняет высшую функцию — мышление. Одной из функций мозга человека является восприятие и генерация речи.
Царство растений
Расте́ния (лат. Plantae, или Vegetabilia) — одна из основных групп многоклеточных организмов, включающая в себя в том числе мхи, папоротники, хвощи, плауны, голосеменные и цветковые растения. Нередко к растениям относят также все водоросли или некоторые их группы. Растения (в первую очередь, цветковые) представлены многочисленными жизненными формами — среди них есть деревья, кустарники, травы и др.
Растения являются объектом исследования науки ботаники.
Общие признаки
· Клетки растений имеют плотные целлюлозные оболочки.
· В клетках находятся зелёные пластиды — хлоропласты, в них зелёный пигмент хлорофилл, поэтому возможенфотосинтез (получение энергии из неорганических веществ на свету при участии фотосинтетических пигментов). Благодаря хлоропластам большинство растений имеет зелёный цвет.
· В основном ведут прикреплённый образ жизни.
· Запасные вещества в клетках накапливаются в виде крахмала.
· Растут в течение всей жизни.
· Жизнедеятельность регулируется фитогормонами.
Размножение
Для растений характерны два вида размножения: половое и бесполое. Для высших сосудистых растений единственной формой полового процесса являетсяоогамия. Из форм бесполого размножении широко распространено вегетативное размножение.
Кроме вегетативных, растения имеют специализированные генеративные органы, строение которых связано с протеканием жизненного цикла. В жизненном цикле растений чередуется половое, гаплоидное поколение (гаметофит) и бесполое, диплоидное поколение (спорофит). На гаметофите образуются половые органы — мужские антеридии и женские архегонии (отсутствуют у некоторых гнетовых и у покрытосеменных). Сперматозоиды (их нет у хвойных, гнетовых и покрытосеменных) оплодотворяют находящуюся в архегонии яйцеклетку, в результате образуется диплоидная зигота. Зигота формирует зародыш, который постепенно развивается в спорофит. На спорофите развиваются спорангии (часто на специализированных спороносных листьях, или спорофиллах). В спорангиях происходит мейоз, и образуются гаплоидные споры. У разноспоровых растений эти споры двух типов: мужские (из них развиваются гаметофиты только с антеридиями) и женские (из них развиваются гаметофиты, несущие только архегонии); у равноспоровых споры одинаковые. Из споры развивается гаметофит, и всё начинается сначала. Такой жизненный цикл имеют Мохообразные и Папоротникообразные, причём у первой группы в жизненном цикле доминирует гаметофит, а у второй — спорофит. У семенных растений картина усложняется за счёт того, что женский (несущий архегонии) гаметофит развивается прямо на материнском спорофите, а мужской гаметофит (пыльцевое зерно) должен быть доставлен туда в процессе опыления. Спорофиллы у семенных растений часто сложно устроены и объединяются в так называемые стробилы, а у покрытосеменных растений — в цветки, которые могут, в свою очередь, объединяться в соцветия. Кроме того, у семенных растений возникает специализированная, состоящая из нескольких генотипов структура — семя, которое можно условно отнести к генеративным органам. У покрытосеменных растений цветок после опыления созревает и формирует плод [4
История систематики
Эпоха великих открытий позволила учёным существенно расширить знания о живой природе. В конце XVI — начале XVII веков начинается кропотливое изучение живого мира, вначале направленное на хорошо знакомые типы, постепенно расширившееся, пока, наконец, не сформировался достаточный объём знаний, составивший основу научной классификации. Использование этих знаний для классификации форм жизни стало долгом для многих известных медиков, таких как Иероним Фабриций (1537—1619, естествоиспытатель Уильям Гарвей (1578—1657), английский анатом Эдвард Тайсон (1649—1708). Свой вклад сделали энтомологи и первые микроскописты Марчелло Мальпиги (1628—1694), Ян Сваммердам (1637—1680) и Роберт Гук (1635—1702).
Линней
К началу XVIII века наукой был накоплен большой объём биологических знаний, однако с точки зрения структурирования этих знаний биология существенным образом отставала от других естественных наук, активно развивавшихся в результате научной революции. Определяющим вкладом в устранении этого отставания стала деятельность шведского естествоиспытателя Карла Линнея (1707—1778), который определил и реализовал на практике основные положения научной систематики, что позволило биологии в достаточно короткие сроки стать полноценной наукой [4] .
После Линнея
Дарвин предположил, что наблюдаемая таксономическая структура, в частности, иерархия таксонов, связана с их происхождением друг от друга. Так возникла эволюционная систематика, ставящая во главу угла выяснение происхождения организмов, для чего используются как морфологические, так и эмбриологические и палеонтологические методы.
Принципы современной систематики
В настоящее время принято, чтобы классификация там, где это допустимо, следовала принципам эволюционизма.
Р. Сокэл и П. Снит в 1963 году основали так называемую численную (нумерическую) систематику, в которой сходство между таксонами определяется не на основании филогении, а на основании математического анализа максимально большого количества признаков, имеющих одинаковое значение (вес).
Домены — относительно новый способ классификации. Трёхдоменная система изобретена в 1990 году, однако до сих пор не принята окончательно. Большинство биологов принимает эту систему доменов, однако значительная часть продолжает использовать пятицарственное деление. Одной из главных особенностей трёхдоменного метода является разделение археев (Archaea) и бактерий (Bacteria), которые ранее были объединены в царство бактерий. Существует также малая часть учёных, добавляющих археев в виде шестого царства, но не признающих домены.
Сегодня систематика принадлежит к числу бурно развивающихся биологических наук, включая всё новые и новые методы: методы математической статистики, компьютерный анализ данных, сравнительный анализ ДНК и РНК, анализ ультраструктуры клеток и многие другие.
Ключевые слова конспекта: многообразие живых организмов, систематика, биологическая номенклатура, классификация организмов, биологическая классификация, таксономия.
В настоящее время на Земле описано более 2,5 млн видов живых организмов. Для упорядочении многообразия живых организмов служат систематика, классификация и таксономия.
Систематика — раздел биологии, задачей которого является описание и разделение по группам (таксонам) всех существующих ныне и вымерших организмов, установление родственных связей между ними, выяснение их общих и частных свойств и признаков.
Разделами биологической систематики являются биологическая номенклатура и биологическая классификация.
Биологическая номенклатура
Биологическая номенклатура заключается в том, что каждый вид получает название, состоящее из родового и видового имён. Правила присвоения видам соответствующих имён регулируются международными номенклатурными кодексами.
Для международных названий видов используется латинский язык . В полное название вида входит также фамилия учёного, описавшего данный вид, а также год публикации описания. Например, международное название домового воробья — Passer domesticus (Linnaeus, 1758), а полевого воробья — Passer montanus (Linnaeus, 1758). Обычно в печатном тексте названия видов выделяют курсивом, а имя описавшего и год описания — нет.
Биологическая классификация
Классификация организмов использует иерархические таксоны (систематические группы). Таксоны имеют различные ранги (уровни). Ранги таксонов можно разделить на две группы: обязательные (любой классифицированный организм относится к таксонам этих рангов) и дополнительные (используемые для уточнения взаимного положения основных таксонов). При систематизировании различных групп используется разный набор дополнительных рангов таксонов.
Таксономия — раздел систематики, разрабатывающий теоретические основы классификации. Таксон искусственно выделенная человеком группа opганизмов, связанных той или иной степенью родства и. в то же время, достаточно обособленная, чтобы ей можно было присвоить определенную таксономическую категорию того или иного ранга.
В современной классификации существует следующая иерархия таксонов: царство, отдел (тип в систематике животных), класс, порядок (отряд в систематике животных), семейство, род, вид. Кроме того, выделяют промежуточные таксоны: над- и подцарства, над- и подотделы, над- и подклассы и т.д.
Читайте также: