Как сделать схему тепловых сетей
В зависимости от числа потребителей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.
Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или поселка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.
Для повышения надежности обеспечения потребителей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. Например, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).
В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но в зависимости от очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Кроме того, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.
Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединены по тупиковой схеме.
Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на основе полимербетонных смесей.
Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.
Скользящие опоры используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. Поэтому при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.
Неподвижные опоры служат для распределения термических удлинений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.
Для восприятия температурных удлинений и разгрузки теплопроводов от температурных напряжений на теплосети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осевые (сальниковые и линзовые) компенсаторы.
Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.
С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.
Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.
ИСПОЛНИТЕЛИ
Л. П. Кварталов (руководитель темы), Л. В. Шайкевич, М. М. Пик, И. М. Канаткина, И. В. Беляйкина, Э. А. Мазурова
Директор Ю. Г. Вострокнутов
УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 16 ноября 1982 г. № 275
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Система проектной документации для строительства
СЕТИ ТЕПЛОВЫЕ
(ТЕПЛОМЕХАНИЧЕСКАЯ ЧАСТЬ)
System of design documents for construction. Heat supply systems (termomechanical part). Working drawings
Постановлением Государственного комитета СССР по делам строительства от 16 ноября 1982 г. № 275 срок введения установлен
Настоящий стандарт устанавливает состав и правила оформления рабочих чертежей тепловых сетей (тепломеханической части) объектов строительства всех отраслей промышленности и народного хозяйства.
Стандарт распространяется на тепловые сети (далее - сети) с параметрами теплоносителей:
вода температурой t £ 200 °С и давлением Ру £ 2,5 МПа (25 кгс/см 2 );
пар температурой t £ 440 °С и давлением Ру £ 6,4 МПа (64 кгс/см 2 ).
Стандарт полностью соответствует СТ СЭВ 5676-86.
(Измененная редакция, Изм. № 1).
1.1. Рабочие чертежи сетей выполняют в соответствии с требованиями настоящего стандарта и других стандартов системы проектной документации для строительства, а также нормами проектирования сетей.
1.2. В состав рабочих чертежей сетей включают:
рабочие чертежи, предназначенные для производства строительно-монтажных работ (основной комплект рабочих чертежей марки ТС);
эскизные чертежи общих видов нестандартных (нетиповых) конструкций (далее - чертежи общих видов).
1.3. В состав основного комплекта рабочих чертежей марки ТС включают:
общие данные по рабочим чертежам;
поперечные разрезы сетей;
чертежи (планы, разрезы, схемы) узлов трубопроводов и П-образных компенсаторов.
1.4. К основному комплекту рабочих чертежей сетей составляют спецификацию оборудования по ГОСТ 21.110-82 и ведомости потребности в материалах по ГОСТ 21.109-80.
1.5 . Для трубопроводов сетей принимают буквенно-цифровые обозначения по ГОСТ 21.106-78 с указанием наружного диаметра и толщины стенки трубы на полке линии-выноски или под ней ( черт. 2 - 4 и 7 настоящего стандарта).
Проектируемые трубопроводы изображают сплошной толстой основной линией, существующие - сплошной тонкой линией, перспективные - штриховой линией. Для перспективных трубопроводов на полке линии-выноски указывают только диаметр условного прохода ( D у ).
Условные графические изображения, обозначения подземных и надземных сооружений на сетях (например, камер, павильонов, ниш), предназначенных для размещения узлов трубопроводов, компенсаторов и вентиляционных устройств, принимают в соответствии с обязательным приложением 1.
Условные графические обозначения оборудования, арматуры, элементов трубопроводов принимают по стандартам Единой системы конструкторской документации, приведенным в справочном приложении 2.
1.7. Масштабы изображений на чертежах должны соответствовать приведенным в табл. 1.
Энергия – это основной продукт, который научился создавать человек. Он необходим как для бытовой жизнедеятельности, так и для промышленных предприятий. В этой статье мы расскажем о нормах и правилах проектирования и строительства наружных тепловых сетей.
Что такое теплосеть
Это совокупность трубопроводов и устройств, которые занимаются воспроизведением, транспортировкой, хранением, регулированием и обеспечением всех пунктов питания теплом посредством горячей воды или пара. От источника энергии она попадает в линии передачи, а затем распределяется по помещениям.
Что входит в конструкцию:
- трубы, которые проходят предварительную обработку от коррозии, а также подвергаются утеплению – обшивка может быть не на всем протяжении пути, а только на том участке, который располагается на улице;
- компенсаторы – устройства, которые отвечают за перемещение, температурные деформации, вибрации и смещения вещества внутри трубопровода;
- крепежная система – в зависимости от типа монтажа бывает разных вариантов, но в любом случае необходимы опорные механизмы;
- траншеи для укладки – обустраиваются бетонные желоба и тоннели, если прокладка происходит наземная;
- запорная или регулирующая арматура – временно прекращает напор или способствует его уменьшению, перекрытию потока.
Также проект теплоснабжения здания может содержать дополнительное оборудование внутри инженерной системы отопления и подачи горячей воды. Так проектирование делится на две части – наружная и внутренняя теплосеть. Первая может идти от центральных магистральных трубопроводов, а может – от теплового узла, котельной. Внутри помещения также есть системы, которые регулируют количества тепла в отдельных комнатах, цехах – если вопрос касается промышленных предприятий.
Проектирование наружных инженерных сетей : водоснабжения, канализации, газоснабжения, теплоснабжения.
Автоматизация проектно-изыскательских работ. Модули Топоплан, Генплан, Сети, Трассы, Сечения, Геомодель
Классификация теплосетей по основным признакам и основные методы проектирования
Есть несколько критериев, по которым может различаться система. Это и способ их размещения, и назначение, и район теплоснабжения, их мощность, а также множество дополнительных функций. Проектировщик в момент проектирования системы теплоснабжения обязательно узнает у заказчика какой объем энергии ежесуточно должна транспортировать линия, сколько выходных отверстий иметь, какие условия эксплуатации будут – климатические, метеорологические, а также как не испортить городскую застройку.
Согласно этим данным можно выбрать один из типов прокладки. Рассмотрим классификации.
По типу укладки
Применяется такое решение не слишком часто из-за трудностей монтажа, сервисного обслуживания, ремонта, а также из-за неприглядного вида таких мостов. К сожалению, проект обычно не включает декоративные элементы. Это обусловлено тем, что коробы и другие конструкции для маскировки часто препятствуют доступу к трубам, а также мешают своевременно увидеть проблему, например, протеку или трещину.
Решение проектирования воздушных теплосетей принимают после инженерных изысканий на предмет обследования районов с сейсмической активностью, а также высоким уровнем залегания грунтовых вод. В таких случаях нет возможности копать траншеи и проводить наземную укладку, так как это может быть непродуктивно – природные условия могут повредить обшивку, влажность повлияет на ускоренную коррозию, а подвижность грунтов приведет к изломам трубы.
Еще одна рекомендация для проведения надземных конструкций – это плотная жилая застройка, когда просто нет возможности копать ямы, или в случае, когда на этом месте уже существует одна или несколько линий действующих коммуникаций. При проведении земельных работ в этом случае велик риск повредить инженерные системы города.
Монтируются воздушные теплосети на металлические опоры и столбы, где крепятся на обручи.
Они, соответственно, прокладываются под землей или на ней. Существует два варианта проекта системы теплоснабжения – когда укладка осуществляется канальным способом и бесканальным.
В первом случае прокладывается бетонный канал или тоннель. Бетон армируется, могут использоваться заранее заготовленные кольца. Это защищает трубы, обмотку, а также облегчает процесс проверки и обслуживания, так как вся система находится в чистоте и сухости. Защита происходит одновременно от влаги, грунтовых вод и подтоплений, а также от коррозии. В том числе такие меры предосторожности помогают предотвратить механическое влияние на линию. Каналы могут быть монолитной заливки бетоном или сборные, их второе название – лотковые.
Бесканальный способ менее предпочтителен, но он занимает гораздо меньше времени, трудозатрат и материальных средств. Это экономически эффективный способ, но сами трубы используются не обычные, а специальные – в защитной оболочке или без нее, но тогда материал должен быть из поливинилхлорида или с его добавлением. Затрудняется процесс ремонта и монтажа, если предполагается реконструкция сети, расширение теплосети, так как нужно будет вновь совершать земельные работы.
По типу теплоносителя
Транспортироваться могут два элемента:
Она передает тепловую энергию и может попутно служить в целях водоснабжения. Особенность в том, что такие трубопроводы не укладываются в одиночку, даже магистральные. Их необходимо проводить в количестве, кратном двум. Обычно это двухтрубные и четырехтрубные системы. Это требование обусловлено тем, что нужна не только подача жидкости, но и ее отвод. Обычно холодный поток (обратка) возвращается на тепловой пункт. В котельной происходит вторичная обработка – фильтрация, а затем нагрев воды.
Это более трудные в проектировании теплосети – пример их типового проекта содержит условия защиты труб от сверхгорячих температур. Дело в том, что паровой носитель гораздо горячее, чем жидкость. Это дает увеличенный КПД, но способствует деформации трубопровода, его стенок. Это можно предотвратить, если использовать качественные стройматериалы, а также регулярно следить за возможными изменениями в давлении напора.
Также опасно еще одно явление – образование конденсата на стенках. Необходимо сделать обмотку, которая будет отводить влагу.
Опасность также подстерегает в связи с возможными травмами при обслуживании и прорыве. Ожог паром очень сильный, а так как вещество передается под давлением, то может привести к значительным повреждениям кожных покровов.
По схемам проектирования
Также эту классификацию можно назвать – по значению. Различают следующие объекты:
Они имеют одну только функцию – транспортировка на длительные расстояния. Обычно это передача энергии от источника, котельной, до распределительных узлов. Здесь могут находиться теплопункты, которые занимаются разветвлением трасс. Магистрали имеют мощные показатели – температура содержимого до 150 градусов, диаметр труб – до 102 см.
Это менее значительные линии, цель которых – доставить горячую воду или пар к жилым зданиям и промышленным предприятиям. По сечению они могут быть различные, его выбирают в зависимости от проходимости энергии в сутки. Для многоквартирных домов и заводов используют обычно максимальные значения – они не превышают 52,5 см в диаметре. В то время как для частных владений жители обычно подводят небольшой трубопровод, который может утолить их нужды в тепле. Температурный режим обычно не превышает 110 градусов.
Это подтип распределительных. Они обладают теми же техническими характеристиками, но служат цели распределения вещества по зданиям одной жилой застройки, квартала.
Они предназначены для соединения магистрали и теплопункта.
По источнику тепла
Исходная точка теплоотдачи – это крупная станция обогрева, которая питает весь город или большую его часть. Это могут быть ТЭЦ, большие котельные, атомные станции.
Они занимаются транспортированием от небольших источников – автономных теплопунктов, которые могут снабжать только маленькую жилую застройку, один многоквартирный дом, конкретное промышленное производство. Автономные источники питания, как правило, не нуждаются в участках магистралей, так как они находятся рядом с объектом, сооружением.
Этапы составления проекта теплосети
Заказчик предоставляет техническое задание проектировщику и самостоятельно или посредством сторонних организаций составляет список сведений, которые понадобятся в работе. Это количество теплоэнергии, которая требуется в год и ежесуточно, обозначение точек питания, а также условия эксплуатации. Здесь же могут находиться предпочтения по максимальной стоимости всех работ и используемые материалы. Первым делом в заказе должно быть указано, для чего необходима теплосеть – жилые помещения, производство.
Работы проводятся как на местности, так и в лабораториях. Затем инженер заполняет отчеты. В систему проверок включена почва, свойства грунта, уровень грунтовых вод, а также климатические и метеорологические условия, сейсмическая характеристика района. Для работы и оформления отчетности понадобится связка GEODirect + ZWCAD Professional + Geonium. Эти программы обеспечат автоматизацию всего процесса, а также соблюдение всех норм и стандартов.
На этой стадии составляются чертежи, схемы отдельных узлов, выполняются расчеты. Настоящий проектировщик всегда использует качественный софт, например, ИНЖКАД. Программное обеспечение предназначено для работы с инженерными сетями. С его помощью удобно проводить трассировку, создавать колодцы, указывать пересечения линий, а также отмечать сечение трубопровода и делать дополнительные отметки.
На этом же этапе оформляется строительная и проектная документация. Чтобы соблюсти все правила ГОСТ, СП и СНиП, необходимо пользоваться программой VetCAD++ или СПДС GraphiCS. Они автоматизируют процесс заполнения бумаг по стандартам законодательства.
Сначала макет предлагают заказчику. В этот момент удобно использовать функцию 3D-визуализации. Объемная модель трубопровода нагляднее, в ней видны все узлы, которые не заметны на чертеже человеку, которые не знаком с правилами черчения. А для профессионалов трехмерный макет необходим, чтобы внести коррективы, предусмотреть нежелательные пересечения. Такой функцией обладает программа ZWCAD 2018 Professional. В ней удобно составлять всю рабочую и проектную документацию, чертить и производить базовые расчеты, используя встроенный калькулятор.
В зависимости от числа потребителей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.
Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или поселка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.
Для повышения надежности обеспечения потребителей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. Например, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).
В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но в зависимости от очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Кроме того, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.
Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединены по тупиковой схеме.
Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на основе полимербетонных смесей.
Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.
Скользящие опоры используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. Поэтому при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.
Неподвижные опоры служат для распределения термических удлинений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.
Для восприятия температурных удлинений и разгрузки теплопроводов от температурных напряжений на теплосети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осевые (сальниковые и линзовые) компенсаторы.
Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.
С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.
Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.
Разработка монтажной схемы заключается в расстановке на трассе неподвижных опор, компенсаторов, камер и запорной арматуры.
Подающий трубопровод на схеме располагают с правой стороны по ходу теплоносителя от источника теплоты, а обратный – с левой.
Расстояние между камерами разбивают неподвижными опорами на компенсационные участки.
При подземной прокладке в городах для компенсации трубопроводов применяют П - образные компенсаторы.
Все естественные повороты трассы теплосети под углом менее должны быть использованы для самокомпенсации температурных удлинений трубопроводов.
На всех ответвлениях от магистрали и ответвлениях к потребителям необходимо устанавливать запорную арматуру.
В высших точках трубопроводов необходимо разместить воздушники, а в нижних – спускники.
Схему разрабатывают в горизонтальной плоскости в масштабе 1:500 в такой последовательности:
Намечают участки естественной компенсации. При этом сумма длин плеч должна быть не более 60% расстояния между опорами для П- образных компенсаторов.
Рис. 12.6. Монтажная схема тепловой сети (начало)
Рис. 12.6. Монтажная схема тепловой сети (продолжение)
2. Намечают условными обозначениями расположение камер в местах ответвлений от магистрали, подключения потребителей, размещения воздушников и спускников.
3. Размещают неподвижные опоры в камерах подключения потребителей.
4. Разбивают расстояния между камерами на компенсационные участки размещением неподвижных опор.
Наиболее целесообразно неподвижные опоры разместить таким образом, чтобы расстояния между ними были равны. В этом случае горизонтальные усилия на опоры минимальны.
5. Размещают запорную арматуру.
На схеме указывают:
трубопроводы и их обозначения – подающий Т1 и обратный Т2; подающий системы горячего водоснабжения Т3, циркуляционный Т4;
арматуру, компенсаторы, неподвижные опоры, углы поворота, камеры (узлы теплофикационные); спуск труб, точки дренажа трубопроводов, маркировку элементов сетей и их нумерацию (компенсаторы – К1, К2 и т.д.; неподвижные опоры – Н1, Н2 и т.д.; камеры – УТ1, УТ2 и т.д.); обозначение секущих плоскостей трассы и их нумерацию.
Монтажная схема трубопроводов тепловых сетей проектируемого поселка приведена на рис 12.6.
Разработка строительных конструкций тепловой сети
Строительный план тепловой сети
После детальной разработки прокладки составляются план и профиль тепловых сетей, по которым производятся земляные и строительные работы.
На плане тепловой сети в масштабе 1 : 500 условными обозначениями наносятся камеры, каналы и компенсаторные ниши, показываются неподвижные опоры, пересечения с другим подземным хозяйством, указываются типы камер и каналов, и все другие необходимые данные; проставляются все размеры, необходимые для производства работ: привязочные от осей камер, каналов и точек изменения трассы до красных линий застройки зданий и осей дорог, строительные длины участков каналов, расстояния до компенсаторов, неподвижных опор и дренажных устройств.
Разработанный в проекте план тепловых сетей представлен на рис. 12.7.
© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.003)
Читайте также: