Как сделать сферу тесла
Я с большим удовольствием прочитал топик-исследование башни Тесла.
Безусловно, авторы ставят очень заманчивую цель: передача энергии без проводов, в планетарных масштабах, просто мечта энергетики.
Анализ, проведенный в топике, глубок, формулы — классика радиотехники, все расчеты верны.
Но после прочтения остался вопрос: если все сделать согласно авторам, то что мы получим? Какие характеристики передачи энергии будут у такой системы?
Вот цитата из источника:
Откуда мы возьмем “заземление”, к которому подключается генератор для накачки такого резонатора на ранее приведенном рисунке?
… для генератора башня это и есть “заземление” через сопротивление, равное активному сопротивлению башни
Далее везде расчеты проведены с упрощением (сумма вместо корня из суммы квадратов, амплитудное значение вместо действующего, округление величин).
Рассматриваться такие расчеты должны как оценочные.
Земля как проводник
Давайте вначале рассмотрим передачу чего угодно электрического — энергии, сигналов — по одному проводу с использованием земли в качестве второго проводника:
Будет ли такое работать? Будет, и работает — авторы публикации отметили в качестве подтверждения этого трамваи.
Земля замечательно выполняет роль второго проводника, и сопротивление земли, как справедливо отметили авторы, действительно не зависит от расстояния между электродами, которые воткнуты помещены в землю.
(На эту тему есть даже задача на втором курсе физфака).
Побочное действие этого способа передачи энергии хорошо знакомо многим — если взять в руки фазу сети 220 Вольт, и при этом изоляция подошв оставляет желать лучшего — (мокрый пол etc.), то может хорошо ударить током, цепь второго провода замыкается через землю.
Будет ли работать вот такая конструкция:
Конечно будет — почему нет, Земля2 так же точно выполняет роль второго проводника. Следует отметить, что все сказанное авторами про картину распределения потенциалов земли при протекании переменного тока через землю как проводник, скорее всего, имеет место быть — распределение, стоячие волны и пр.
Чуть короче: играет роль, в какие точки поверхности планет подключать провода приемника.
Подтверждение такого распределения в планетарном масштабе было бы фееричным и очень красивым экспериментом.
В качестве иллюстрации способа передачи энергии с помощью башни Тесла можно привести вот такой опыт: если собрать генератор переменного напряжения достаточной величины, и поднести к генератору любой металлический предмет, между выводом генератора и этим предметом загорается дуга:
Авторы описали механизм передачи энергии подобным образом: потенциал изолированного металлического предмета относительно бесконечности (прости меня физфак. ) равен нулю. Генератор постоянно перезаряжает эту железяку, меняя ее потенциал, и между выводом генератора и предметом протекает ток.
Высокая частота в подобных конструкциях требуется для поддержания силы тока, достаточной для горения дуги (ток через емкость металлического предмета пропорционален частоте — см. ниже).
То есть все-таки работать будет?
Передатчик
Оценим, до какого напряжения будет заряжаться проводник.
Емкость одиночного сферического проводника в вакууме:
Для шара радиусом 1 метр емкость составит примерно 110 пикоФарад.
Авторы упомянули ток в 1 килоАмпер и частоту 20 килоГерц
Максимальный потенциал сферы радиусом 1 метр составит
При указанных выше данных получим, что максимальный потенциал верхней части башни Тесла будет равен примерно 225 миллионов Вольт.
Не будем такое рассматривать как технически достижимую величину в электроэнергетике. В России есть ЛЭП с напряжением 1000 килоВольт (1150 если точно), то есть один миллион Вольт (в Украине таких нет). Пусть это и будет максимальное напряжение на верхней части башни (там, где сферический конь проводник). Предположим, что нет никакой технической сложности обеспечить изоляцию на таком напряжении.
Тогда сила тока в цепи генератора составит примерно 4 Ампера.
При напряжении в миллион вольт это соответствует передаваемой мощности 4 Мегаватта. Круто! Нет, не круто. Упомянутая выше ЛЭП с напряжением 1150 килоВольт имеет пропускную способность 5500 Мегаватт — в 1000 раз больше при том же напряжении.
Так поднять напряжение! Боюсь, некуда — 1000 кВ в электроэнергетике считается сверхвысоким напряжением, вызывающим массу сложностей. Та самая ЛЭП с напряжением 1000 кВ в данный момент эксплуатируется на напряжении 500 кВ.
Но это не все проблемы.
Приемник
R = 1/(2*пи*частоту*емкость) = 71 кОм
15 Ом в цепи 220 Вольт — это много, при включении нагрузки мощностью 1 килоВатт (ток 5 Ампер, это один небольшой утюг, или компьютер + ТВ + освещение) падение напряжения будет 75 Вольт, то есть фактически напряжение в сети упадет ниже уровня, когда его можно использовать для электропитания.
Таким образом, от такого приемника энергии можно с трудом запитать одну квартиру, и то без мощных потребителей энергии.
Как же так, куда девается энергия, авторы писали об очень высоком КПД?
Никуда не девается. Эти сопротивления — реактивные, но падение напряжения на них наблюдаться будет во всей красе.
А как же резонансы?
Посчитаем параметры образовавшегся контура.
Емкость = 110 пикоФарад (см. выше), частота = 20 кГц (у авторов).
Волновое сопротивление контура будет равно 750 кОм.
При подключении к такому контуру нагрузки, вносящей в контур сопротивление 71 кОм (т.е. если подключить к приемнику энергии одну квартиру — см. выше), добротность контура упадет до 10 (грубо), а при подключении 10 квартир добротность упадет до 1, резонансные явления исчезнут и система совсем перестанет работать.
Что значит совсем? При падении добротности будет пропорционально падать и выходное напряжение приемника. То есть без нагрузки — хорошо, с ростом нагрузки напряжение падает вплоть до нуля.
Настоящая Земля
В качестве оптимистичного финала давайте посчитаем все тоже, но для настоящего заземления, то есть башня Тесла — это отдельная планета размером с Землю.
Емкость = 700 микроФарад.
Максимальное напряжение при токе 1 кА и частоте 20 кГц = 78 Вольт, то есть можно многократно и безопасно повышать рабочее напряжение, повышая тем самым передаваемую мощность.
Внутреннее сопротивление системы в цепи высокого напряжения на той же частоте = 0,011 Ом
Приведенное сопротивление в цепи 220 Вольт = 2 микроОм, что на порядки меньше сопротивлений в любых линиях электропитания.
Вот оно — настоящее заземление!
Вывод
Перечисленные недостатки такой системы не могут быть устранены изменением конструкции, применением особых материалов и пр. — это недостатки самого способа передачи энергии (ну разве что сделать башню Тесла размерами, сравнимыми, как минимум, с астероидами).
Обратите внимание, что рассчитывалась фактически идеальная конструкция — без каких-либо потерь, без учета влияния распределений тока/напряжения в планетарном масштабе.
Фактически был проведен расчет идеального генератора и идеального приемника, соединенных одним концом и каждый со своим заземлением.
Проблема передачи энергии с использованием башен Тесла заключается в том, что сама башня — исключительно неэффективное заземление.
Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
Сертификат и скидка на обучение каждому участнику
Городская научно – практическая конференция обучающихся
ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА
Секреты волшебного шара Тесла
Исполнитель:
Руководитель:
Байгильдина Роза Ризвановна,
учитель начальных классов
Как-то еще в 3 классе в Интернете я обратила внимание на опыты с необычным шаром. Он удивил меня своим загадочным сиянием. Его называют шар Тесла.
Я поставила перед собой цель: определить причины воздействия шара Теслы на работу электронных приборов .
Для достижения цели я поставила ряд задач:
Узнать, как он устроен?
Как он работает?
Что можно и чего нельзя делать с моей лампой?
Методы, которые использовались в работе: эмпирические: беседа, фото, наблюдение; теоретический анализ источников: сравнение, обобщение материалов, практические: исследования.
Объект исследования: шар Тесла (плазменный светильник).
Предмет исследования : взаимодействие шара (плазменного светильника) с другими электрическими приборами.
Выводы – работа имеет большое практическое значение для развития познавательного интереса. И, что не менее важно, повышает интерес к изучению новых предметов, к экспериментированию. Перспектива – в старших классах на уроках физики я смогу глубже изучить открытия Теслы .
2.5 Устройство и принцип работы плазменного шара……………………………….
2.6. Практическая часть. Демонстрация опытов………………………………………
2.7.Современный мир декоративных светильников………………………………….
IV . Библиографический список ……………………………………………………….
Я поставила перед собой цель: определить причины воздействия шара Тесла на работу электронных приборов . (Приложение 1)
Проблема: С плазменным шаром можно взаимодействовать и испытать трепетное чувство от взаимного общения. Наблюдения за шаром вызвали еще больший интерес к его изменениям. Возникли вопросы. Так ли он безопасен? Может ли случиться удар электрическим зарядом?
Для достижения цели я поставила ряд задач:
Узнать, как он устроен?
Как он работает?
Что можно и чего нельзя делать с моей лампой?
Методы, которые использовались в работе: эмпирические: беседа, фото, наблюдение; теоретический анализ источников: сравнение, обобщение материалов, практические: исследования.
Объект исследования: плазменный светильник шар Тесла
Предмет исследования : воздействие шара Тесла на работу электронных предметов.
Гипотеза: плазменный светильник может создавать помехи в работе электронных приборов.
Выводы – работа над проектом имеет большое практическое значение для развития познавательного интереса. И, что не менее важно, повышает интерес к изучению новых предметов, к экспериментированию.
Перспектива – в старших классах на уроках физики я смогу глубже изучить открытия Теслы.
Основная часть.
2.1. Краткая биография Теслы.
Никола Тесла является самым загадочным ученым 20 века. Серб по национальности, он родился в 1856г. в Австро-Венгрии.
Учился он в высшем техническом училище и в Пражском университете, работал инженером телефонного общества в Будапеште, затем в компании Эдисона в Париже, после чего в 1884г. эмигрировал в США.
В этой стране изобретатель прожил вплоть до своей кончины в 1943 году.
Изобретения Теслы.
Тесла – гениальный изобретатель и ученый. За свою жизнь Н. Тесла сделал около 1000 различных изобретений и открытий, получил почти 800 патентов на изобретения в разных областях техники.
Никола Тесла сам демонстрировал на выставке свой первый трансформатор высокой частоты. Тесла был подсоединен к этому устройству и из его рук забили ветвистые молнии, вызывающие ужас у посетителей. Публика была потрясена!
Но, несмотря на пугающий внешний вид разрядов, они безвредны для человека, так как токи высокой частоты, проходя по самой поверхности кожи, не причиняют никакого вреда.
В начале столетия трансформатор Тесла использовался в медицине. Пациентов обрабатывали высокочастотными токами, оказывавшими тонизирующее и оздоравливающее действие.
Трансформатор Тесла и по сей день широко используется в радио- и телеаппаратуре, а также в других электроприборах.
2. 4. Что такое плазма.
Для начала я нашла информацию в Интернете – что такое плазма.
2.5. Устройство и принцип работы плазменного шара.
Я обратилась к Зое Михайловне, нашему учителю физики, с просьбой объяснить, как устроен шар. (Приложение 3 -5 ) + видеоролик 1.
Работу плазменного шара Зоя Михайловна объяснила мне на примере работы высоковольтного индуктора. Катушка индуктивности есть в шаре Тесла. В нем накапливается электрический заряд. Действие плазменного шара основано на принципе катушки Тесла. Колба шара наполнена смесью инертных газов. Шарик, расположенный внутри стеклянной колбы – это электрод, на который подается напряжение мощностью в несколько киловольт. Чтобы вся конструкция превратилась в магический шар, внутри которого мы видим маленькие молнии, нужен еще один электрод. Им служит стекло, из которого изготовлена колба. Внутри шара создается электрическое поле, а молнии, которые мы видим, направлены по линиям этого поля. Если к шару дотронуться пальцем или рукой, силовое поле изменится и молнии устремятся в точку, где расположен палец.
Плазменный шар является газоразрядной лампой с инертным газом, в которой в результате ионизации газа можно наблюдать светящуюся плазму. Несмотря на различные конструкции декоративных светильников принцип действия их одинаков. При включении лампы носители зарядов (ионы и электроны) начинают ускоренно двигаться вдоль линий силового поля лампы. В результате ударного возбуждения и рекомбинации возникает характерное для данного газа свечение, наблюдается тлеющий разряд. Для возникновения и поддержания газового разряда в лампе требуется наличие электрического поля .
2.7. Практическая часть. Демонстрация опытов.
Я очень хотела испытать свой шар. Для начала я восстановила в памяти правила безопасного поведения при обращении с электроприборами. (Приложение 6)
Затем я еще раз внимательно изучила опыты в Интернете и под присмотром мамы провела несколько опытов.
Вывод: несмотря на пугающий внешний вид разрядов, они безвредны для человека, так как токи высокой частоты, проходя по самой поверхности кожи, не причиняют никакого вреда.
Опыт 2. Светящаяся лампочка. (Приложение 8) + видеоролик 2.
В ходе своей лекции об электромагнитном поле высокой частоты перед учеными Королевской академии Тесла включал и выключал электродвигатель дистанционно, в его руках сами собой загорались электрические лампочки. Тогда шел 1892 год!
Я провела опыт с лампочкой. Если к работающей плазменной лампе просто, держа в руке, поднести неоновую, люминесцентную или любую другую газоразрядную лампу, то она начнёт светиться. (показ)
Вывод: всё, что наполнено инертным газом будет светиться возле него.
Опыт 3. Опыт с телефоном. (Приложение 9)
Вывод: вокруг шара и вокруг телефона существуют электромагнитные поля. Они взаимодействуют без проводов. Большая напряженность электрического поля вблизи плазменного шара создает помехи в работе телефона, вблизи электронной аппаратуры.
2.8. Современный мир декоративных светильников . (Приложение 10)
Плазменные декоративные светильники делают не только в форме шара, но и виде сердца, цилиндра, плоского диска и даже гантелей.
А самый большой плазменный шар диаметром в 1 метр находится в Центре науки «Technorama в Швейцарии.
Мне еще предстоит в старших классах изучить электрический ток. Я поняла, что это очень интересно. В кабинете физики есть приборы, которые мне помогут хорошо разобраться в сложных процессах.
Магический плазменный шар создает в интерьере атмосферу загадочности, таинственности. С ним можно играть или просто украсить комнату. Плазменный шар может играть роль светильника или ночника. При помощи данного шара можно оригинально украсить любые мероприятия и вечеринки, поскольку он сможет создать незабываемую атмосферу волшебства. Добавить изюминку своему празднику и гости будут приятно впечатлены Вашим гостеприимством.
Моя гипотеза о воздействии плазменного светильника на работу электронных приборов подтвердилась.
В плазменную лампу встроен трансформатор. Он подает переменный ток. Электрический ток – это направленное движение заряженных частиц.
Вокруг любого заряженного тела существует электрическое поле. Если заряды начинают двигаться в одном направлении, то появляется магнитное поле. Вместе они образуют электромагнитное поле.
Электроны, которые движутся от металлического шарика к стеклянной сфере, вызывают свечение газов (молнии).
4. Лампочки, наполненные инертным газом светятся вблизи плазменного шара, следовательно, вокруг установки существует электромагнитное поле высокой напряженности.
5. Лампочки загорались сами по себе у меня в руках на определенном расстоянии, значит, электрический ток может передаваться без проводов.
Библиографический список
Пиштало В. Никола Тесла. Портрет среди масок. - М: Азбука-классика, 2010
Ржонсницкий Б. Н. Никола Тесла. Жизнь замечательных людей. Серия биографий. Выпуск 12. - М: Молодая гвардия, 1959.
Цверава Г. К. Никола Тесла, 1856-1943. - Ленинград. Наука. 1974.
Фейгин О. Никола Тесла: Наследие великого изобретателя. - М.: Альпина нон-фикшн, 2012.
В 1997 году я заинтересовался катушкой Тесла и решил построить свою. К сожалению, я потерял интерес к ней, прежде чем я смог её запустить. Через несколько лет я нашел свою старую катушку, немного пересчитал её и продолжил строительство. И снова я забросил ее. В 2007 году друг показал мне свою катушку, напомнив мне о моих незавершенных проектах. Я опять нашел свою старую катушку, пересчитал все и в этот раз завершил проект.
Катушка Тесла - это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.
Высоковольтный трансформатор используется для зарядки конденсатора.
Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.
Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.
Этапы строительства
Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.
Вот основные шаги, с которых следует начать:
- Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
- Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
- Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
- Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
- Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
- Соедините все компоненты, настройте катушку, и все готово!
Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!
Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь - пока.
Детали
Катушка делалась в основном из тех деталей, которые были в наличии.
Это были:
4кВ 35mA трансформатор от неоновой вывески.
0.3мм медная проволока.
0.33μF 275V конденсаторы.
Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.
Вторичная обмотка
Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя
Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.
Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
L = [(2πf) 2 C] -1
При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.
Металлическая сфера или тороид
Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.
Первичная обмотка
Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
L = [(2πf) 2 C] -1
С - емкость конденсаторов, F-резонансная частота вторичной обмотки.
Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.
Конденсаторы
Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом
Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
C = I ⁄ (2πfU)
Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.
Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.
Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.
Разрядник
Мой разрядник это просто два винта с металлическим шариком в середине.
Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.
Характеристики
Колебательный контур
Трансформатор NST 4кВ 35мА
Конденсатор 3 × 24 275VAC 0.33μF
Разрядник: два шурупа и металлический шар
Первичная обмотка
Внутренний диаметр 17см
Диаметр трубки обмотки 6 мм
Расстояние между витками 3 мм
Длина трубки первичной обмотки 5м
Витки 6
Вторичная обмотка
Диаметр 7,5 см
Высота 37 см
Проволока 0.3мм
Длина провода около 209m
Витки: около 900
Наверняка вы хотя бы раз краем уха слышали, что существует такая вещь, как ”катушка Теслы”. Кто-то просто не понимает, что это такое, другие думают, что это как-то связано с автомобилями Илона Маска, а третьи предполагают, что это что-то из книги о кройке и шитье. И лишь немногие по-настоящему знают, что это такое, и то, что это изобретение позапрошлого века может перевернуть весь мир энергетики, но до сих пор этого не сделало. Поговаривают, что именно это изобретение гениального Николы Теслы стало причиной ”падения Тунгусского метеорита”. Впрочем, я бы не спешил говорить о том, что катастрофа того времени была рукотворной. Сейчас катушка Теслы известна вам по красочным шоу, которые устраивают в кружках любителей физики. Помните? Там, где молнии бьют между клетками с людьми. Все это поверхностно, но что на самом деле представляет из себя катушка Теслы? Это гениальное изобретение или сплошная ”пыль в глаза”?
Катушка Теслы интереснее, чем может показаться на первый взгляд.
Что такое катушка Теслы
Сразу скажу, что в описании этого относительно простого прибора есть несколько довольно сложных для неподготовленного человека слов. Они относятся к электрике, и большинство даже если слышало их, то не сразу поймет, что они означают. Поэтому я дам два описания. Одно из них будет обычным, с небольшим уклоном в техническую сторону, в а второе, что называется, на пальцах.
10 доказательств того, что Никола Тесла был богом науки.
Итак, если говорить по науке, то катушка Теслы (или трансформатор Теслы) — это устройство, изобретенное Николой Теслой. Поэтому логично, что ему дали его имя. Более того, на него даже есть патент на имя великого физика. Он выдан 22 сентября 1896 года. В патенте изобретение называется ”Аппарат для производства электрических токов высокой частоты и потенциала”. На самом деле из этой заявки все должно быть понятно. Это прибор, который является резонансным трансформатором, производящим высокое напряжение высокой частоты.
Гениальный изобретатель не просто придумал катушку своего имени, но и запатентовал ее.
В основе работы приборы лежат резонансные стоячие электромагнитные волны. Сейчас поймете, как это!
У прибора есть две проводниковые катушки — первичная и вторичная. В первичной обмотке как правило небольшое количество витков. Вместе с ней идут конденсатор и искровой промежуток. Эта часть прибора обязательно должна быть заземлена.
Вторичная обмотка — это прямая катушка провода. Когда частоты колебания колебательного контура первичной обмотки совпадают с собственными колебаниями стоячих волн вторичной обмотки возникает резонанс и стоячая электромагнитная волна. В итоге между концами катушки появляется высокое переменное напряжение.
Упрощенно катушка Теслы выглядит так.
На самом деле все довольно просто, если понимать принцип действия законов физики, на которых основана работа прибора, но вот, как и обещал, более простое объяснение.
Катушка Теслы простыми словами
Представьте себе маятник с тяжелым грузом. Если вводить его в движение, толкая в какой-то определенный момент в одной точке, то амплитуда будет расти по мере увеличения усилия. Но если найти точку, в которой движение будет входить в резонанс, то амплитуда будет расти многократно. В случае с маятником она ограничена параметрами подвеса, но если мы говорим о напряжении, то расти оно может чуть ли не бесконечно. В обычных условиях наблюдается рост напряжения в десятки и даже сотни раз, достигая миллионов вольт даже в далеко не самых мощных приборах.
На Марсе есть электричество, но откуда оно берется?
Пример простого объяснения знаком нам всем с детства. Помните, когда мы раскачивали кого-то на качелях? Так вот, мы же толкали качели в той точке, в которой они максимально быстро разгонялись вниз. Это и есть грубое, но в целом верное объяснение резонанса, который используется в катушке Теслы.
Резонанс может делать великие вещи. В том числе и с электричеством.
В качестве основных элементов сам Никола Тесла использовал конденсатор, который подключался к источнику питания. Именно он и питал первичную обмотку, от которой возникал резонанс во вторичной. Важно было только правильно подобрать частоту тока ”на входе” и материал для вторичной обмотки. Если они не будут соответствовать друг другу, то роста напряжения не будет вовсе или он будет крайне незначительным.
Для чего нужна катушка Теслы
К визуальным эффектам мы еще вернемся, так как они являются только иллюстрацией работы прибора, а изначально он создавался для того, чтобы передавать электрическую энергию на расстояние без проводов. Именно этим и занимался один из самых загадочных ученых в истории.
Из-за чего бьет молния и как она появляется
Это не является секретной информацией и встречается в различных документах того времени. Суть в том, что если установить в нескольких километрах друг от друга достаточно мощные катушки Теслы, они смогут передавать энергию и решать многие проблемы, а увеличение напряжения и частоты почти из ничего может позволить решить многие энергетические проблемы.
Потенциально катушка Теслы может передавать энергию на большие расстояния.
Учитывая некоторые свойства прибора, он может даже опровергать ряд доказательств того, что создание вечного двигателя невозможно. Я уже рассказывал, как и кто пытался его создать, но в некотором роде именно катушка Теслы при определенных условиях могла бы стать одним из его компонентов.
Почему никто не развивает катушку Теслы
Сказать, что кто-то всерьез занимается вопросом развития технологии, нельзя. Может быть она не так привлекательна в промышленном применении, а может быть она нужна только военным. Точного ответа на этот вопрос нет, но именно военные много работают в этом направлении.
Все просто! Если как следует ”раскочегарить” катушку Теслы, она может спалить всю электронику на очень большом расстоянии. Даже простейшие макеты, которые делаются в домашних условиях, могут вывести из строя домашние бытовые приборы, что уже говорит о действительно мощных установках.
Причин, по которым катушки Тесла развиваются недостаточно эффективно много — от недостаточно востребованности до секретности и опасности.
Реальное применение катушки Теслы находят только в шоу, которые основаны на электрических спецэффектах. Считается, что их использование безопасно для человека, но при этом оно позволяет создавать красочные фиолетовые молнии, которые можно видеть буквально перед собой. Это очень эффектно и заставляет многих детей увлечься наукой.
Где применяются катушки Теслы
Сами катушки или их действие применяется в некоторых сферах жизни. Кроме комнат, описанных выше, созданные молнии высокого напряжения могут применяться в красочных лампах, которые можно трогать рукой, и разряд будет стремиться к ней.
Интересные и малоизвестные факты о молниях
Созданные молнии могут показать, где есть повреждение вакуумной системы — они всегда стремятся к месту нарушения герметичности. Эффект находит место даже в косметологии. Дело в том, что параметры тока в катушке Теслы относительно безопасны для человека и лишь ходят по поверхности кожи, слега ”пробирая” ее изнутри. Приборы, основанные на таком эффекте, позволяют стимулировать и тонизировать кожу, решая некоторые проблемы с венами, морщинами и другими неприятными изменениями. Но пользоваться такими приборами должен профессионал, так как полностью безопасными назвать их нельзя.
Катушки Теслы применяются даже в косметологии.
Тесла и Тунгусский метеорит
Про Тунгусский метеорит сказано более чем много, и я сейчас не буду подробно пересказывать историю этого происшествия. Скажу только, что не все верят в метеорит, природное явление, крушение инопланетного корабля, столкновение с Землей миниатюрной черной дыры (есть и такая версия) или испытание какого-то оружия. Многие уверены, что катастрофа была связана именно с попыткой Николы Теслы передать энергию на большое расстояние.
Лично я к этой версии отношусь довольно скептически, но если ученый смог создать прибор, который мог сотворить такое, то только представьте, какой потенциал имели созданные им технологии, которые мы сейчас используем для развлечения.
Катушка Теслы несет в себе не только красоту, но и опасность.
Прямых доказательств или явных опровержений виновности Николы Теслы во взрыве в Сибири нет. Поэтому оставим версию конспирологами или простым людям для развития фантазии.
Как сделать катушку Теслы
На самом деле было несколько некорректно расписывать, как сделать такой прибор дома самостоятельно, так как он может быть очень опасен как для людей, так и для домашней техники. Достаточно просто знать, что это возможно и на YouTube полно роликов о том, как приобщиться к этому явлению.
Добавлю только, что для создания миниатюрной катушки достаточно обзавестись несколькими вещами, которые можно найти в гараже более-менее запасливого ”самоделкина”.
Сделанная в домашних условиях катушка Теслы может даже зажигать лампочки рядом с ней.
По сути вам понадобится только источник питания, небольшой конденсатор, маленькая катушка проводника для первичной обмотки, пара сотен метров тонкой медной эмалированной проволоки для вторичной обмотки, диэлектрическая труба для ее намотки и все.
Если вы решили сделать что-то подобное, то в каждом ролике более точно расскажут, что нужно для эксперимента. Но помните, что без специальной подготовки это может быть смертельно опасно.
Читайте также: