Как сделать сечение многогранника
Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия. 10–11 классы : учеб.для общеобразоват. организаций : базовый и углубл. уровни – М.: Просвещение, 2014. – 255, сс. 121-126.
Дополнительная литература:
Потоскуев Е.В., Звавич Л.И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 5-30.
Открытые электронные ресурс:
Теоретический материал для самостоятельного изучения
Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.
Определение: две прямые параллельны, если они лежат в одной плоскости и не пересекаются. Если через две прямые нельзя провести одну плоскость, то такие прямые скрещиваются.
Теорема о параллельности трех прямых: если a∥b, b∥c, то и a∥c. Определение: прямая и плоскость параллельны, если они не имеют общих точек. Признак параллельности прямой и плоскости: прямая, не лежащая в плоскости, параллельна этой плоскости, если она параллельна некоторой прямой из этой плоскости.
Определение: две плоскости параллельны, если они не имеют общих точек.
Признак параллельности двух плоскостей: если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости параллельны.
Если две плоскости пересекаются, то их линия пересечения — прямая.
Если две параллельные плоскости пересечены третьей, то их линии пересечения параллельны (см. рис.)
Если плоскости α и β пересекаются по прямой a, а плоскости β и γ пересекаются по прямой b, причем a∥b, то плоскости α и γ пересекутся по прямой c∥a∥b.
Следом называется прямая, по которой плоскость сечения пересекает плоскость любой из граней многогранника.
Примеры и разбор решения заданий тренировочного модуля
№1 SABCD – четырехугольная пирамида, в основании которой лежит квадрат ABCD, а две боковые грани SAB и SAD представляют собой прямоугольные треугольники с прямым углом ∠A. Найдите площадь сечения пирамиды плоскостью α, если SA=AB=a.
сначала построим сечение по условию задачи.
1)Пусть AC∩BD=O. Две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Заметим, что т.к. ∠SAB=∠SAD=90∘⇒SA⊥(ABC). Проведем в плоскости SAC прямую OK∥SC. Т.к. O – середина AC, то по теореме Фалеса K – середина SA. Через точку K в плоскости SAB проведем KM∥SB (следовательно, M – середина AB). Таким образом, плоскость, проходящая через прямые OK и KM, и будет искомой плоскостью. Необходимо найти сечение пирамиды этой плоскостью. Соединив точки O и M, получим прямую MN. Т.к. α∥(SBC),то α пересечет плоскость SCD по прямой NP∥SC (если NP∩SC≠∅, то α∩(SBC)≠∅, что невозможно ввиду их параллельности). Таким образом, KMNP – искомое сечение, причем KP∥AD∥MN⇒ это трапеция.
2)Т.к. все точки K,M,N,P – середины отрезков SA,AB,CD,SD соответственно, то: а) MN=AD=a б) KP=1/2AD=a/2 в) KM=1/2SB=a 2/2 Заметим, что по теореме о трех перпендикулярах SB⊥BC⇒KM⊥MN. Таким образом, KMNP – прямоугольная трапеция. SKMNP=(KP+MN)* KM/ 2 =3 a 2 /8
Ответ:3 a 2 /8
боковая грань прямой призмы является прямоугольником.
Площадь каждой боковой грани равна произведению высоты призмы на сторону основания.
То есть большая боковая грань содержит большую сторону основания.
Получим, что длина стороны АС=7см.
Зная большую сторону основания и площадь наибольшей боковой грани призмы, длину высоты призмы вычислить нетрудно.
Получим, что длина высоты призмы равна .
Найдем площадь основания, а оно равно площади сечения, по формуле .
Мы воспользуемся второй формулой. Получим, что площадь основания равна .
Ответ: 15 /4 см 2
№3 На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ:QB=1:2. Точка P — середина ребра AS.
Найдите площадь сечения DPQ, если площадь сечения DSB равна 6.
пусть сторона основания пирамиды равна 3а, а высота пирамиды равна h. Тогда площадь сечения DSB равна
S=BD*SO/2= 3 =6
Площадь сечения DPQ равна
Дана правильная треугольная пирамида SABC с вершиной S. Через середину ребра AC и точки пересечения медиан граней ASB и CSB проведена плоскость. Найдите площадь сечения пирамиды этой плоскостью, если AB=21,AS=12 .
пусть LK∩SO=H. Тогда по теореме о трех перпендикулярах HK⊥AC как наклонная (HO⊥(ABC),OK⊥AC как проекция). Следовательно, и LK⊥AC.
Тогда SALC=AC⋅LK/2 Рассмотрим △SKB: BK=AB⋅ /2=21 /2⇒cosB=7 /12 .
Тогда по теореме косинусов для △KLB: KL 2 =729/4⇒KL=27/2
Дана правильная четырехугольная призма ABCDA1B1C1D1. На ребре AA1 отмечена точка K так, что AK : KA1 = 1 : 2. Плоскость α проходит через точки B и K параллельно прямой AC. Эта плоскость пересекает ребро DD1 в точке M, АВ=4, АА1=6. Найдите площадь сечения.
По теореме о трех перпендикулярах прямые BM и AC перпендикулярны, а значит, прямые BM и KL перпендикулярны. Площадь четырехугольника, диагонали которого взаимно перпендикулярны, равна половине произведения диагоналей. Найдем их: KL=AC=4 как диагональ квадрата, лежащего в основании призмы, тогда
по теореме Пифагора.
Ответ: 8
В пространстве две фигуры, для нашего случая плоскость и многогранник могут иметь следующее взаимное расположение: не пересекаются, пересекаются в точке, пересекаются по прямой и плоскость пересекает многогранник по его внутренности (рис.1), и при этом образуют следующие фигуры:
а) пустая фигура (не пересекаются)
Если в пересечении многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника с плоскостью.
рис.1
Определение.Сечением пространственного тела (например, многогранника) называется фигура, получающаяся в пересечении тела с плоскостью.
Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются точки данного многогранника.
Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом, пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок.
Если плоскости пересекаются по прямой , то прямую называют следом одной из этих плоскостей на другой.
В общем случае секущая плоскость многогранника пересекает плоскость каждой его грани (а также любую другую секущую плоскость этого многогранника). Она пересекает и каждую из прямых, на которых лежат ребра многогранника.
Прямую, по которой секущая плоскость пересекает плоскость какой-либо грани многогранника, называют следом секущей плоскости на плоскости этой грани, а точку, в которой секущая плоскость пересекает прямую, содержащую какое – либо ребро многогранника, называют следом секущей плоскости на этой прямой. Эта точка является и следом прямой на секущей плоскости. Если секущая плоскость пересекает непосредственно грань многогранника, то можно говорить о следе секущей плоскости на грани, и, аналогично, о следе секущей плоскости на ребре многогранника, то есть о следе ребра на секущей плоскости.
Так как прямая однозначно определяется двумя точками, то для нахождения следа секущей плоскости на любой другой плоскости и, в частности, на плоскости любой грани многогранника, достаточно построить две общие точки плоскостей
Для построения следа секущей плоскости, а также для построения сечения многогранника этой плоскостью, должен быть задан не только многогранник, но и секущая плоскость. А построение плоскости сечения проходит в зависимости от задания этой плоскости. Основными способами задания плоскости, и в частности секущей плоскости, являются следующие:
1. тремя точками не лежащих на одной прямой;
2. прямой и не лежащей на ней точкой;
3. двумя параллельными прямыми;
4. двумя пересекающимися прямыми;
5. точкой и двумя скрещивающимися прямыми;
Возможны и другие способы задания секущей плоскости.
Поэтому все способы построения сечений многогранников можно разделить на методы.
Методы построения сечений многогранников
Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.
Существует три основных метода построения сечений многогранников:
I. Аксиоматический метод:
b. Метод вспомогательных сечений.
II. Комбинированный метод.
III. Координатный метод.
Заметим, что метод следов и метод вспомогательных сечений являются разновидностями Аксиоматического метода построения сечений.
Можно также выделить следующие методы построения сечений многогранников:
1. построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
2. построение сечения, проходящего через заданную прямую параллельно, другой заданной прямой;
3. построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
4. построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
5. построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.
Основными действиями, составляющие методы построения сечений, являются нахождение точки пересечения прямой с плоскостью, построения линии пересечения двух плоскостей, построение прямой параллельной плоскости, перпендикулярной плоскости. Для построения прямой пересечения двух плоскостей обычно находят две ее точки и проводят через них прямую. Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную. Тогда искомая точка получается в пересечении найденной прямой с данной.
Рассмотрим отдельно перечисленные намиметоды построения сечений многогранников:
Метод следов.
Метод следов основывается на аксиомах стереометрии, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют основным следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.
Отметим,что при построении основного следа секущей плоскости используется следующее утверждение.
Если точки принадлежат секущей плоскости и не лежат на одной прямой, а их проекция (центральными или параллельными) на плоскость, выбранную в качестве основной, являются соответственно точки то точки пересечения соответственных прямых, то есть точки и лежат на одной прямой (рис.1, а, б).
Эта прямая является основным следом секущей плоскости. Так как точки лежат на основном следе, то для его построения достаточно найти две точки из этих трех.
Построение сечения методом следов – это поэтапное отыскание точек, принадлежащих одной и той же плоскости грани и одновременно плоскости сечения, то есть прямым, проходящим через точки, принадлежащие сечению. Метод подходит для использования тогда, когда следы секущей плоскости и прямые граней многогранника пересекаются в области чертежа, то есть если сечение параллельно или почти параллельно основанию, этот метод построения не подойдет.
Задача 1. Построить сечение параллелепипеда плоскостью, проходящей через точки .
Шаг 1. Чезез точки и , которые принадлежат одной грани, и, следовательно, одной плоскости, проводим прямую. Точки этой прямой все принадлежат секущей плоскости. Точка лежит в плоскости основания, поэтому неплохо бы найти найти точку прямой , которая также принадлежала бы основанию. Для этого проводим прямую , и находим точку ее пересечения с прямой – .
Шаг 2. Проводим прямую , принадлежащую плоскости основания. Находим точку пересечения этой прямой ребра – .
Шаг 3. Точка лежит в задней грани, поэтому надо бы найти точку прямой , которая принадлежала бы плоскости задней грани. Для этого проведем прямую , которая принадлежит как плоскости основания, так и плоскости задней грани, и найдем точку ее пересечения с прямой – . Через две точки задней грани проводим прямую , и находим место пересечения этой прямой с ребром – .
Шаг 4. Окончание построения. Соединяем полученные точки отрезками, и строим многоугольник сечения.
Задача 2. Построить сечение параллелепипеда плоскостью, проходящей через точки
Шаг 1. Точки и лежат в одной плоскости, можно соединить их прямой. Прямая пересечет ребро в точке .
Шаг 2. Точки и также лежат в одной плоскости. Соединяем их прямой и отыскиваем точку пересечения ею ребра – .
Шаг 3. Найдем точку секущей плоскости, принадлежащую передней грани, чтобы затем через эту точку и точку можно было бы тоже провести след секущей плоскости. Для того, чтобы найти такую точку, проведем луч и найдем его пересечение с прямой – ведь обе эти прямые принадлежат плоскости верхней грани. Точка пересечения – точка . Точки и можно соединить отрезком.
Шаг 4. Находим точку пересечения отрезком ребра – точку .
Шаг 5. После этого соединяем отрезками полученные точки и закрашиваем многоугольник сечения.
Задача 3. Построить сечение параллелепипеда плоскостью, проходящей через точки
Шаг 1. Построим прямую , это можно сделать, так как обе точки принадлежат одной грани. Точка принадлежит грани основания, поэтому нужна точка в этой плоскости.
Шаг 2. Для того, чтобы найти точку, одновременно принадлежащую и секущей плоскости, и плоскости нижней грани, продолжим прямую и найдем точку ее пересечения с прямой – .
Шаг 3. Проводим прямую и находим точку пересечения этой прямой с ребром – точка .
Шаг 4. Теперь надо найти точку в плоскости передней грани, потому что в этой плоскости у нас уже есть точка – точка . Для того, чтобы найти такую точку, продлим прямую и найдем пересечение этой прямой с прямой – точка .
Шаг 5. Проводим прямую , отыскиваем точки пересечения ею ребер – точку , и ребра – точку .
Шаг 6. Соединяем точки и получаем многоугольник сечения.
Окончательный вид сечения с другого ракурса:
Задача 4. Построить сечение параллелепипеда плоскостью, проходящей через точки . Точка в задней грани.
Шаг 1. Проводим прямую через две точки одной плоскости – и . Определяем точку пересечения данной прямой ребра – .
Шаг 2. Продолжение прямой пересечется с продолжением прямой – так как обе прямые принадлежат плоскости задней грани. Точка также принадлежит задней грани, но также и боковой. А в боковой грани у нас есть точка , и тогда можно провести прямую .
Шаг 3. Точка – точка пересечения прямой ребра . Продлим также ребро и найдем пересечение прямой и прямой – точку , которая принадлежит плоскости основания.
Шаг 4. Соединяем Точки и плоскости основания, определяем точку пересечения данной прямой с ребром – точку . Соединяем полученные точки отрезками. Штрихуем полученный многоугольник сечения.
-->
Секущей плоскостью многогранника называется любая плоскость, по обе стороны от которой имеются точки данного многогранника. Секущая плоскость пересекает грани многогранника по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника.
Тетраэдр имеет четыре грани, поэтому его сечениями могут быть только треугольники и четырехугольники (рис. 1). Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырехугольники, пятиугольники и шестиугольники (рис. 2).
Теоремы, используемые при построении сечений
Теорема 1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Поэтому секущая плоскость пересекает плоскости параллельных граней по параллельным прямым.
Теорема 2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Теорема 3. Если прямая l параллельна какой либо прямой m, проведённой в плоскости то она параллельна и самой плоскости
Теорема 4. Если прямая, лежащая в плоскости сечения, не параллельна плоскости некоторой грани, то она пересекается со своей проекцией на эту грань.
Алгоритм построения сечений
Для построения сечений рекомендуем пользоваться следующим алгоритмом.
1. Если две точки секущей плоскости лежат в плоскости одной грани, то проводим через них прямую. Часть прямой, лежащая в плоскости грани — сторона сечения.
2. Если прямая a является общей прямой секущей плоскости и плоскости какой-либо грани, то находим точки пересечения прямой a с прямыми, содержащими ребра этой грани. Полученные точки — новые точки секущей плоскости, лежащие в плоскостях граней.
3. Если никакие две из данных точек не лежат в плоскости одной грани, то строим вспомогательное сечение, содержащее любые две данные точки, а затем выполняем шаги 1, 2.
Читайте также: