Как сделать реле оборотов
Всем здравствуйте. В сети, да и в общем часто возникает вопрос, как выполнить регулятор скорости вращения вентилятора для асинхронного двигателя? Известно, что мы можем легко регулировать скорость двигателя, используя симистор с фазовым управлением. И также, в литературе содержится информация о том, что асинхронный двигатель вращается со скоростью от нескольких процентов до 20% ниже, чем синхронная скорость.
Поэтому на вопрос о регулировании вращения асинхронного двигателя назревает ответ, инвертор. Однако это устройство является достаточно дорогостоящим, и смысл его выполнять собственными силами является спорным. Также считается, что использование фазового регулятора мощности с использованием симистора для этой цели невозможно. Однако это убеждение не совсем верно. Для некоторых двигателей и нагрузок использование симистора с фазовым управлением позволяет регулировать обороты в широком диапазоне.
Доступны интегральные микросхемы в таких простых фазовых регуляторах. Принимая во внимание ограничения, налагаемые системой фазового регулятора, мы можем очень просто создать нормально работающий регулятор скорости асинхронного двигателя. Давайте попробуем рассмотреть, что происходит после подключения асинхронного двигателя к типовому димеру, который обычно выполнен в соответствии с схемой, приведенной на рисунке.
Рассмотрим случай (рисунок графика), когда симистор включается под углом = 100 после того, как напряжение сети проходит через ноль. Угол проводимости будет около 150 градусов, поэтому симистор отключится под углом около 250 градусов в точке B. Остаточное положительное напряжение останется на конденсаторе C1, поскольку он не полностью разряжается через симистор.
В этот момент в системе запуска появляется отрицательное напряжение, которое сначала заряжает остаточное напряжение до С1, а затем запускает триод под углом около 350. Второе включение симистора произойдет при очень низком напряжении, и угол проводимости будет намного меньше, чем при первом. В следующем периоде условия аналогичны, поэтому значительная асимметрия активации симистора в отрицательном и положительном полупериодах сохраняется. Такая асимметрия недопустима в схеме управления двигателем, она может быть даже опасна из-за насыщения магнитной системы.
Четыре стандартных диода, два резистора и потенциометр были добавлены в стандартную схему димера, которая показана на рисунке.
В первом полупериоде система ведет себя так же, как схема из предыдущего рисунка. Однако после появления отрицательного напряжения остаточное положительное напряжение на С1 разряжается через диод D4 и резистор R2. Диод D3 предотвращает дальнейшую зарядку с отрицательным напряжением C1, даже после того, как положительное напряжение было разряжено. Элементы D1, D2 и R1 выполняют аналогичную функцию в положительном полупериоде. В результате работы схемы симметризации после нескольких периодов асимметрия устраняется.
Элементы R5 и C2 сглаживают выбросы напряжения, возникающие после отключения симистора в точке B. Без них быстрое увеличение напряжения на выходе может привести к включению симистора. Резистор R4 увеличивает время запускающего импульса. Без него это время будет определяться емкостью С1 и внутренними сопротивлениями элементов С1, Т1 и Т2 и будет слишком коротким, чтобы правильно запустить симистор.
Ток на индуктивной нагрузке после включения симистора медленно увеличивается, при слишком коротком импульсе он может не достигнуть значения IL "защелкивающегося" тока, и симистор отключится после импульса затвора. IL для типовых симисторов составляет от нескольких до нескольких десятков миллиампер.
Схема может быть собрана на печатной плате, показанной на рисунке в тексте.
Стоить обратить внимание на тот факт, что во время работы присутствует полное напряжение сети. Так что не переусердствуйте с миниатюризацией устройства. Не исключено, что регулятор будет работать в условиях повышенной влажности и, возможно, даже химически агрессивных. Поэтому расстояние между дорожками должно быть на значительном расстоянии, что влечет за собой размер платы.
В качестве R7 стоит использовать потенциометр с пластиковой осью или удлинителем с изолированной осью. В зависимости от мощности управляемого двигателя, симистор должен быть оснащен подходящим радиатором. Для защиты от протекания чрезмерного тока через не рабочий двигатель стоит выбрать сопротивление потенциометра, например, добавив параллельный резистор. Это может произойти, когда мы включаем потенциометр на низкую скорость. Однако, как правило, это не опасно для двигателя из-за низкого тока, протекающего в обмотках. Всем спасибо.
В большинстве современных бытовых и промышленных приборов применяются электрические машины, совершающие какую-либо полезную работу. В качестве рабочего инструмента в них могут выступать самые разнообразные приспособления, которые необходимо вращать с различной скоростью. Для изменения этого параметра используется регулятор оборотов электродвигателя.
Назначение
Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.
Однако на практике данная опция может преследовать и другие цели:
- Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
- Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
- Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
- Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
- Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
- Обеспечения достаточного момента на низких частотах вращения электрической машины.
Возможность реализации тех или иных функций у регуляторов оборотов определяет как принцип их действия, так и схематическое исполнение.
Принцип работы
Для регулировки оборотов может использоваться способ понижения или повышения напряжения, изменение силы тока и частоты, подаваемых в обмотки асинхронных и коллекторных электродвигателей. Поэтому далее рассмотрим варианты частотных преобразователей и регуляторов напряжения.
Среди используемых в промышленной и бытовой сфере следует выделить:
- Введение рабочего сопротивления – реализуется при помощи переменных резисторов, делителей и прочих преобразователей. Хорошо обеспечивает снижение в однофазных двигателях за счет контроля скольжения (разницы между магнитным полем статора и скоростью вращения асинхронных агрегатов). Для этого устанавливаются электродвигатели большей мощности, чтобы на них можно было подавать меньшее напряжение. Соотношение по скорости оборотов будет составлять до 2 раз в сторону уменьшения.
- Автотрансформаторный – выполняется путем перемещения подвижного контакта по обмотке, что снижает или увеличивает скорость вращения электродвигателя. Преимущество такого принципа заключается в четкой синусоиде переменного тока и большой перегрузочной способности.
- Тиристорный или симисторный – изменяет величину питающего напряжения посредством пары встречно включенных тиристоров или совместного включения с симистором. Этот способ применим не только в асинхронных двигателях, но и других бытовых приборах – диммерах, переключателях и т.д.
Как видите на схеме, подаваемое на тот же асинхронный однофазный электродвигатель напряжение, проходит через переменный резистор R1 на тиристор D1 и на управляющий электрод симистора T1. Перемещая ручку тиристорного регулятора R1 изменяем и скорость вращения однофазного электродвигателя.
- Транзисторный – позволяет изменять форму подаваемого напряжения за счет преобразования числа импульсов и временной паузы между подаваемым напряжением. Благодаря чему получил название широтно-импульсной модуляции, пример такого регулятора приведена на схеме ниже.
Здесь питание однофазного асинхронного двигателя производится от линии 220В через выпрямительный блок VD1-4, далее напряжение поступает на эмиттер и коллектор транзисторов VT1 и VT2. Подавая управляющий сигнал на базы этих транзисторов, и регулируют обороты мотора.
- Частотный – преобразует частоту подаваемого напряжения на обмотки однофазного или трехфазного асинхронного электродвигателя. Это наиболее современный способ, ранее он относился к дорогостоящим, но с появлением дешевых высоковольтных полупроводников и микроконтроллеров перешел в разряд наиболее эффективных. Может реализовываться с помощью транзисторов, микросхем или микроконтроллеров, способных уменьшать или увеличивать частоту ШИМ.
- Полюсный – позволяет регулировать частоту вращения электродвигателя при переключении количества катушек в фазных обмотках, в результате чего изменяется направление и величина тока, протекающего в каждой из них. Реализуется как за счет намотки нескольких катушек для каждой из фаз, так и одновременным последовательным или параллельным соединением катушек, такой принцип приведен на рисунке ниже.
Как выбрать?
Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.
Помимо этого для регулятора оборотов необходимо выбрать:
- Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
- Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
- Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
- Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
- Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.
Подключение
Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.
Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:
Схема подключения регулятора
Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:
Распиновка регулятора
Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.
Проверьте цветовую маркировку
Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.
Регулятор скорости вращения двигателя может понадобится, если вы собираете станок или пытается усовершенствовать заводской. Неправильное подключение чревато падением мощности или даже поломкой мотора. Ниже вы узнаете, как установить и собрать регулятор оборотов с поддержанием мощности.
Схема регулятора оборотов для электродвигателя
Конечно, регулятор оборотов электродвигателя на 220в можно купить в магазине, но:
- В магазинах сложно найти платы для сетевого напряжения (основная часть рынка – регуляторы до 35 вольт).
- Те, что продаются для сетевых двигателей имеют посредственное качество. Мощность и скорость они не поддерживают, поэтому для станков (например, токарного) они не подходят в принципе.
- Промышленные контроллеры с поддержанием скорости и мощности очень дороги, и купить их сложно.
Почему бы тогда не собрать? Все детали продаются в любом радиомагазине, к тому же программировать или прошивать ничего не понадобится, хоть и понадобится микросхема.
Технические характеристики контроллера
Схема будет иметь следующие характеристики:
- Рабочее напряжение – от 110 до 230 вольт.
- Возможности регулировки – 9 – 99%. В целом, этот показатель зависит от выбранного димера.
- Нагрузка – до 2,5 киловатт.
- Рабочая мощность – 300 ватт без радиатора. Если установить хорошее охлаждение, можно ее увеличить на 20-25%.
Эта схема регулятора оборотов коллекторного двигателя на 220в достаточно тихая и имеет плавный пуск. Собрать же ее достаточно просто.
Простейшая схема регулятора
Ориентируйтесь на эту схему. Чтобы уменьшить обороты электродвигателя, необходим ШИМ модулятор, он же симистор. Это микросхема, которая модулирует ШИМ-сигнал, позволяющий задать собственное частоту.
В этой схеме роль модулятора играет микросхема U2008B. Это недорогая плата предназначена специально для регулировки оборотов асинхронного двигателя.
Как пишет Сайт компании электрические системы, также понадобится диод и резистор, чтобы снизить напряжение. На схеме они изображены со знаками D1 и R1. Также, чтобы отфильтровать поступающее электричество, необходим силовой конденсатор, обозначенный С1.
Р1, R5 и R3 – это делители напряжения, предназначенные для регулирования напряжения. Второй резистор необходим, чтобы синхронизировать внутренние блоки двигателя с симистором.
Чтобы частотный регулятор был безопасным, рекомендуется установить обычный плавкий предохранитель на 1,5 ампера.
Если вы хотите сделать профессиональную плату, возьмите эту схему для печати:
Останется только перенести ее на фольгированный текстолит и вытравить. Посмотреть инструкцию можно здесь. Цена вопроса такого регулятора – 200 рублей.
Заводские регуляторы
В некоторых случаях выгоднее взять регулятор оборотов коллекторного или асинхронного двигателя, если вы собираетесь модернизировать промышленное оборудование.
Наиболее распространенные модели:
1 Motor Speed Controller 400W. Недорогой (1300 рублей) ШИМ регулятор с простым управлением. На главной панели есть кнопка включения/выключения и 10 ступенчатый диммер. Обладает высокой производительностью и способен управлять двигателями до 400 ватт. Внутри присутствует хорошая система охлаждения и защиты. Для него ниже будет описана инструкция подключения.
2 KLS 4000-A1. Пожалуй, один из мощнейших китайских регуляторов вращения. Подключения, как такового, не требует. Достаточно вставить вилку в розетку на корпусе. Присутствует экран, где отображаются частота оборотов в минуту. Пожалуй, это наиболее удобный способ регулировки оборотов коллекторного двигателя без потери мощности. Цена начинается от 2400 рублей из Китая. В России продается с наценкой в 1,5 раза.
У российских домашних умельцев особым спросом пользуются тиристорные регуляторы оборотов.
С виду они похожи на обычные реостаты, но обладают большим запасом мощности. Впрочем, их можно самостоятельно по этой схеме.
Минусов у такого вида регуляторов достаточно много:
- Пропуски полупериодных волн. В связи с этим, двигатель во время работы будет постоянно шуметь. На работе двигателя это не скажется, но вот удобство работы – сомнительное.
- Для двигателей большой мощности они в принципе не подходят. Они удобны для запуска небольших моторов, вроде вентиляторных. Про двигатели от стиральной машины можно забыть.
- Стабилизация мощности достаточно низкая, желательно поставить дополнительный конденсатор, чтобы сгладить скачки напряжения.
Но есть и достоинства:
- Цена. Купить их можно буквально за 150-200 рублей в любом радиомагазине. Из Китая можно заказать рублей за 75.
- Малый размер и компактность. Их можно спрятать, они не занимают лишнего места на столе и помещаются в карман.
Способы, как подключить регулятор оборотов
Как же подключить регулятор оборотов? Рассмотрим Motor Speed Controller 400W по 3 причинам:
- Это наиболее популярный контроллер скоростей.
- С его подключением возникают проблемы, из-за разметки на китайском языке.
- Подключение почти не отличается от того, чтобы был собран своими руками.
Для начала, стоит изучить схему подключения, напечатанная на боковинке регулятора или паспорте устройства.
Теперь необходимо воспользоваться распиновкой на задней панели. Понадобится выбрать необходимые выводы. Контакты CCW и COM всегда закорочены, трогать их не нужно. Для подключения понадобится задействовать 3 нижних контакта. АС ~ АС – это ноль и фаза (провода устанавливаются произвольно, все же ток переменный). В FG вставляется провод заземления, если оно есть.
В общем, на этом подготовка закончена. Остается только вставить штекер от регулятора к клеммнику двигателя.
Рекомендуется в разрыв фазного провода поставить конденсатор.
Он поможет сгладить поступающее напряжение. Также не помешает установить ферритовый фильтр. Оно поможет сгладить помехи при работу.
Регулятор оборотов электродвигателя стиральной машины
Подключение регулятор оборотов электродвигателя д ля стиральной машины в первую очередь рекомендуется разобрать и проверить наличие симистора — силовой элемент. Он должен стоять на радиаторе. Если его нет, следует дополнительно установить, чтобы регулятор не перегревался. Радиатор смазывают термопастой для лучшего термоотделения.
После это регулятор собирают и подключают к двигателю согласно схеме, приведенной на корпусе. Это дает возможность регулировать, стабилизировать обороты, увеличивая амплитуду напряжения. При этом возрастает мощность устройства.
В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.
Схема
Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.
Детали и корпус
Изготовление твердотельного реле
Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.
Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.
Смотрите видео
Смотрите видео испытания устройства совместно с цифровым регулятором температуры.
Читайте также: