Как сделать регулировку яркости светодиода
Одним из важных преимуществ светодиодных светильников по сравнению с традиционными газоразрядными является возможность управления световым потоком. В светодиодном светильнике достаточно легко организовать плавное управление световым потоком (димминг) в автоматическом или ручном режиме в зависимости от условий эксплуатации и назначения осветительного прибора. К условиям эксплуатации можно отнести: изменение уровня естественной освещенности в зависимости от времени суток или погодных условий, присутствие человека в освещаемой зоне, температуру наиболее важных и критичных узлов самого светильника и т.д.
Варианты управления яркостью свечения
Управлять яркостью свечения светодиодного светильника можно несколькими способами:
1. Изменяя количество светодиодов
2. Изменяя значение тока, протекающего через светодиоды
3. С помощью симисторного регулятора мощности (TRIAC-диммера).
4. С помощью переменного резистора
Первый способ управления практически не применяется в силу низкой эффективности, поскольку при нем некоторое количество светодиодов не будет использоваться в светильнике в течение всего срока его эксплуатации. Второй способ регулировки яркости применяется достаточно широко — он наиболее оптимален с точки зрения удобства применения и выполнения требований директив по электромагнитной совместимости. Третий и четвертый способы управления яркостью применяется в основном для бытовых нужд ввиду низкой стоимости, большого распространения симисторных регуляторов мощности и удобства интеграции в существующие системы освещения.
Применение источников питания с функцией димминга
Ведущие производители источников питания для светотехнических решений в своих разработках применяют два основных интерфейса управления выходным током (димминга): аналоговый и цифровой. Аналоговый — это интерфейс управления, который позволяет изменять значение выходного тока при помощи управляющего напряжения. Цифровой — это интерфейс управления, который позволяет изменять значение выходного тока при помощи широтно-импульсной модуляции (ШИМ). Обобщенная схема светодиодного светильника с функцией управления представлена на рисунке 1.
Рис. 1. Схема светодиодного светильника с функцией управления яркостью (диммингом)
Схема состоит из четырех основных блоков: источника питания со стабилизированным выходным током и встроенным интерфейсом управления, матрицы светодиодов, устройства управления и датчика Д. Для построения автономного светодиодного светильника необходим датчик, на основе показаний которого светильник будет включаться/выключаться (датчик движения) или изменять яркость (датчик уровня освещенности). В качестве устройства управления можно применить готовые контроллеры от производителей Philips и Osram или разработать собственное устройство. В таблице 1 приведены параметры источников питания со встроенными интерфейсами для управления выходным током (с диммингом).
Таблица 1. Источники питания для светодиодной техники с интерфейсом управления
Наименование | Производитель | Мощность, Вт | Аналоговый интерфейс | Цифровой интерфейс |
---|---|---|---|---|
LPF-16D-xx | MEAN WELL (MW) | 16 | Да | Да |
LPF-25D-xx | MEAN WELL (MW) | 25 | Да | Да |
EUC-025SxxxDS | INVENTRONICS | 25 | Да | Нет |
EUC-035SxxxDT | INVENTRONICS | 35 | Да | Нет |
HLP-40H-xx | MEAN WELL (MW) | 40 | Да | Да |
LPF-40D-xx | MEAN WELL (MW) | 40 | Да | Да |
HLG-40H-xxB | MEAN WELL (MW) | Да | Да | |
EUC-040SxxxDS | INVENTRONICS | 40 | Да | Нет |
EUC-050SxxxDT | INVENTRONICS | 50 | Да | Нет |
HLP-60H-xx | MEAN WELL (MW) | 60 | Да | Да |
LPF-60D-xx | MEAN WELL (MW) | 60 | Да | Да |
HLG-60H-xxB | MEAN WELL (MW) | 60 | Да | Да |
EUC-075SxxxDT | INVENTRONICS | 75 | Да | Нет |
HLP-80H-xx | MEAN WELL (MW) | 80 | Да | Да |
HLG-80H-xxB | MEAN WELL (MW) | 80 | Да | Да |
LPF-90D-xx | MEAN WELL (MW) | 90 | Да | Да |
EUC-100SxxxDT | INVENTRONICS | 100 | Да | Нет |
HLG-100H-xxB | MEAN WELL (MW) | 80 | Да | Да |
HLG-120H-xxB | MEAN WELL (MW) | 120 | Да | Да |
HLG-150H-xxB | MEAN WELL (MW) | 150 | Да | Да |
EUC-150SxxxDT | INVENTRONICS | 150 | Да | Нет |
HLG-185H-xxB | MEAN WELL (MW) | 185 | Да | Да |
EUC-200SxxxDT | INVENTRONICS | 200 | Да | Нет |
HLG-240H-xxB | MEAN WELL (MW) | 240 | Да | Да |
HLG-320H-xxB | MEAN WELL (MW) | 320 | Да | Да |
Аналоговый интерфейс управления позволяет регулировать выходной ток (предел ограничения выходного тока) при помощи внешнего управляющего напряжения, которое подается на управляющие выводы источника питания. Управляющее напряжение изменяется в диапазоне от 1 до 10 В, что приводит к изменению выходного тока источника питания. Пример регулировочной характеристики приведен на рисунке 2. Этот график не является общим для всех источников питания с аналоговым интерфейсом управления. Для каждого модуля питания регулировочная характеристика приведена в фирменном описании. В рассматриваемом примере подача максимального управляющего напряжения 10 В обеспечивает 100% значение выходного тока, 5 В на управляющем входе дают 50% выходного тока. Полностью выключить светодиодный светильник, питаемый этим источником, не получится: даже при минимальном управляющем напряжении 1 В выходной ток составит не менее 10% от номинала.
Рис. 2. Управляющая характеристика источника питания с диммингом (на примере HLP-60H-xx)
Все источники питания, у которых есть аналоговый интерфейс позволяют подключать внешний потенциометр. У разных производителей источников питания варианты подключения потенциометра различаются. Так, например, для моделей HLG-xxxH-xxB, LPF-xxD, HLP-xxH-xx компании MEAN WELL внешний потенциометр подключается к выводам управления ADJ1 (синий провод) и ADJ2 (белый провод). К источникам питания EUC-025SxxxDS, EUC-035SxxxDT, EUC-040SxxxDS, EUC-050SxxxDT, EUC-075SxxxDT, EUC-100SxxxDT, EUC-150SxxxDT, EUC-200SxxxDT компании Inventronics необходимо подключить резистивный делитель к выводам OUTPUT 10V (желтый провод), INPUT 1-10V (фиолетовый провод) и GND (зеленый провод).
Модули питания с аналоговым интерфейсом широко применяются в системах освещения с автономным управлением: в системах уличного освещения, подъездного освещения, при освещении парковок и т.д.
Встроенный цифровой интерфейс позволяет управлять значением выходного тока источника питания при помощи широтно-импульсной модуляции. На сигнал управления накладывается следующие ограничения:
- амплитуда сигнала управления должна быть не более 10В,
- частота управляющего сигнала выбирается из диапазона 100Гц…3кГц,
- длительность импульса управления должна быть не меньше 10% от периода следования импульсов.
Соответствие между значением длительности и выходным током можно найти по регулировочной характеристике.
Источники питания с цифровым интерфейсом применяются обычно в светильниках с централизованным управлением: в системах архитектурной подсветки зданий или внутренней подсветки помещений.
С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.
Схема и принцип её работы
С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.
Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток – низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза. Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов. Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц
Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -Uпит. Как только напряжение на нём достигнет уровня 2/3Uпит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -Uпит. Достигнув отметки 1/3Uпит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.
Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.
В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.
Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.
Плата и детали сборки регулятора яркости
Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.
После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.
- DA1 – ИМС NE555;
- VT1 – полевой транзистор IRF7413;
- VD1,VD2 – 1N4007;
- R1 – 50 кОм, подстроечный;
- R2, R3 – 1 кОм;
- C1 – 0,1 мкФ;
- C2 – 0,01 мкФ.
Заказать готовую сборку от автора можно здесь.
Практические советы
Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.
Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.
Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.
Светодиод – простейший индикатор, который можно использовать для отладки кода: его можно включить при срабатывании условия или просто подмигнуть. Но для начала его нужно подключить.
Подключение светодиода
Светодиод – это устройство, которое питается током, а не напряжением. Как это понимать? Яркость светодиода зависит от тока, который через него проходит. Казалось бы, достаточно знания закона Ома из первого урока в разделе, но это не так!
- Светодиод в цепи нельзя заменить “резистором”, потому что он ведёт себя иначе, нелинейно.
- Светодиод полярен, то есть при неправильном подключении он светиться не будет.
- Светодиод имеет характеристику максимального тока, на котором может работать. Для обычных 3 и 5 мм светодиодов это обычно 20 мА.
- Светодиод имеет характеристику падение напряжения (Forward Voltage), величина этого падения зависит от излучаемого цвета. Цвет излучается кристаллом, состав которого и определяет цвет. У красных светодиодов падение составляет ~2.5 вольта, у синих, зелёных и белых ~3.5 вольта. Более точную информацию можно узнать из документации на конкретный светодиод. Если документации нет – можно пользоваться вот этой табличкой, тут даны минимальные значения:
Если питать светодиод напряжением ниже его напряжения падения, то яркость будет не максимальная, и здесь никаких драйверов не нужно. То есть красный светодиод можно без проблем питать от пальчиковой батарейки. В то же время кристалл может деградировать и напряжение уменьшится, что приведёт к росту тока. Но это редкий случай. Как только мы превышаем напряжение падения – нужно стабилизировать питание, а именно – ток. В простейшем случае для обычного светодиода ставят резистор, номинал которого нужно рассчитать по формуле: R = (Vcc - Vdo) / I , где Vcc это напряжение питания, Vdo – напряжение падения (зависит от светодиода), I – ток светодиода, а R – искомое сопротивление резистора. Посчитаем резистор для обычного 5 мм светодиода красного цвета при питании от 5 Вольт на максимальной яркости (2.5 В, 20 мА): (5-2.5)/0.02=125 Ом. Для синего и зелёного цветов получится 75 Ом. Яркость светодиода нелинейно зависит от тока, поэтому “на глаз” при 10 мА яркость будет такая же, как на 20 мА, и величину сопротивления можно увеличить. А вот уменьшать нельзя, как и подключать вообще без резистора. В большинстве уроков и проектов в целом для обычных светодиодов всех цветов ставят резистор номиналом 220 Ом. С резистором в 1 кОм светодиод тоже будет светиться, но уже заметно тусклее. Таким образом при помощи резистора можно аппаратно задать яркость светодиода. Как определить плюс (анод) и минус (катод) светодиода? Плюсовая нога длиннее, со стороны минусовой ноги бортик чуть срезан, а сам электрод внутри светодиода – крупнее:
Мигаем
Мигать светодиодом с Ардуино очень просто: подключаем катод к GND, а анод – к пину GPIO. Очень многие уверены в том, что “аналоговые” пины являются именно аналоговыми, но это не так: это обычные цифровые пины с возможностью оцифровки аналогового сигнала. На плате Nano пины A0-A5 являются цифровыми и аналоговыми одновременно, а вот A6 и A7 – именно аналоговыми, то есть могут только читать аналоговый сигнал. Так что подключимся к A1, настраиваем пин как выход и мигаем!
Мигаем плавно
Как насчёт плавного управления яркостью? Вспомним урок про ШИМ сигнал и подключим светодиод к одному из ШИМ пинов (на Nano это D3, D5, D6, D9, D10, D11). Сделаем пин как выход и сможем управлять яркостью при помощи ШИМ сигнала! Читай урок про ШИМ сигнал. Простой пример с несколькими уровнями яркости:
Подключим потенциометр на A0 и попробуем регулировать яркость с его помощью:
Как вы можете видеть, все очень просто. Сделаем ещё одну интересную вещь: попробуем плавно включать и выключать светодиод, для чего нам понадобится цикл из урока про циклы.
Плохой пример! Алгоритм плавного изменения яркости блокирует выполнение кода. Давайте сделаем его на таймере аптайма.
Теперь изменение яркости не блокирует выполнение основного цикла, но и остальной код должен быть написан таким же образом, чтобы не блокировать вызовы функции изменения яркости! Ещё одним вариантом может быть работа по прерыванию таймера, см. урок.
Светодиод будет мигать не очень плавно: яркость будет нарастать слишком резко и практически не будет меняться. Связано это с тем, что человеческий глаз воспринимает яркость нелинейно, а мы управляем ей линейно. Для более плавного ощущения яркости используется коррекция по CRT гамме, которая переехала из этого урока в отдельный урок по миганию светодиодом по CRT гамме в блоке алгоритмов. Изучи обязательно!
Ещё один момент: если подключить светодиод наоборот, к VCC, то яркость его будет инвертирована: 255 выключит светодиод, а 0 – включит, потому что ток потечет в другую сторону:
Светодиодные ленты
Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по ~3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.
Подключаем к Arduino
Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором: Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате.
Управление
Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.
Питание и мощность
Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:
- Яркость. Максимальная мощность будет потребляться на максимальной яркости.
- Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
- Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
- Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
- Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.
Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.
- Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2 ~ 70W, ближайший блок питания в продаже будет скорее всего на 100W.
- Пример 2: берём ту же ленту, но точно знаем, что яркость во время работы не будет больше половины. Тогда можно взять блок на 70 / 2 == 35W.
Важные моменты по току и подключению:
- Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
- Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
- Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.
Видео
Регулировать яркость освещения в комнате, где установлена люстра с несколькими лампами накаливания, не представляет труда. Берем выключатель на несколько кнопок и при необходимости включаем либо выключаем часть ламп.
Даже если люстра рассчитана на одну лампу, ее яркость можно изменять в широких пределах увеличивая либо уменьшая подаваемое напряжение. Светодиод работает в очень узком диапазоне напряжения и при его снижении просто гаснет.
Для изменения яркости светодиодных ламп используют диммер, представляющий собой ШИМ-контроллер (контроллер с широтно-импульсной модуляцией мощности).
Принцип широтно-полюсной модуляции (ШИМ)
Изменения мощности питающего напряжения при применении шим-контроллера обеспечивается благодаря подаче на коммутирующий элемент (в случае со светодиодами – полевой транзистор, симистор либо динистор) сигналов с изменяющейся скважностью.
S=T/T1, где Т – период импульсов, Т1 – период положительного фронта.
В ШИМ-контроллере импульсы следуют с постоянной частотой, изменяется лишь длительность пауз.
Ниже представлена принципиальная схема ШИМ-контроллера:
Увеличение ширины импульса увеличивает время поступления тока через транзистор к нагрузке, следовательно, и пропускаемый ток. Частота следования импульса значительно выше той, которую способен уловить глаз, обычно 100-200Гц, потому мерцания светодиодов мы не ощущаем. Преимущество регуляторов нагрузки на основе ШИМ-контроллеров, значительно более высокий КПД сравнительно с резистивными, поскольку избыточная нагрузка гасится, а не потребляется.
Подключение диммера в схему питания светодиодной лампы
Существует два варианта подключения:
- Схема подключения перед драйвером питания, когда диммируется переменное напряжение;
- Подключение после драйвера питания, с ШИМ-регуляцией постоянного напряжения.
Промышленные варианты диммеров для светодиодных ламп
Тип управления диммером:
- Инфракрасный;
- Радио;
- Стационарный.
Диммер, монтируемый вместо выключателя, с пультом дистанционного управления. Обычно устанавливаются при переоборудовании обыкновенного освещения лампами накаливания на светодиодные ленты.
Диммер, устанавливаемый перед драйвером питания светодиодов на дистанционном управлении с инфракрасным управлением.
Образец с управлением через радиоканал. В отличие от инфракрасного передатчика, такой пульт способен включить освещение даже с улицы.
Выпускают образцы с механическим либо сенсорным управлением. Есть даже модели, позволяющие управлять освещением с помощью смартфона через WiFi.
Основной недостаток всех устройств – достаточно высокая цена.
Если у вас нет желания переплачивать за ненужные функции, изготовить диммер для светодиодных ламп 220в своими руками совсем не сложно.
Собираем диммер своими руками
Схема на симисторах:
В этой схеме задающий генератор построен на двух симисторах, триаке VS1 и диаке VS2. После включения схемы конденсаторы начинают заряжаться через резисторную цепочку. Когда напряжение на конденсаторе достигает напряжения открытия симистора, через них начинает течь ток, а конденсатор разряжается. Чем меньше сопротивление резистора, тем быстрее заряжается конденсатор, тем меньше скважнось импульсов.
Изменение сопротивления переменного резистора регулирует глубину стробирования в широком диапазоне. Такую схему можно использовать не только для светодиодов, но и для любой сетевой нагрузки.
Подключение диммера в качестве выключателя
Схема подключения к сети переменного тока:
Диммер на микросхеме N555
Микросхема N555 представляет собой аналогово-цифровой таймер. Важнейшее ее преимущество – способность работать в большом диапазоне питающего напряжения. Обыкновенные микросхемы с TTL логикой работают от 5В, а логическая единица у них – 2,4В. КМОП серии более высоковольтные.
Но схема генератора с возможностью изменения скважности получается достаточно громоздкая. Так же у микросхем со стандартной логикой повышение частоты уменьшает напряжение выходного сигнала, что не даёт возможность коммутировать мощные полевые транзисторы и подходит лишь для небольших по мощности нагрузок.
Таймер на микросхеме N555 идеально подходит для шим-контроллеров, поскольку одновременно позволяет регулировать и частоту, и скважность импульсов. Напряжение на выходе составляет около 70% напряжения питания, за счёт чего ей можно управлять даже мосфетовскими полевыми транзисторами с током до 9А. При крайне низкой стоимости используемых деталей затраты на сборку составят 40-50 рублей.
А эта схема позволит управлять нагрузкой на 220В с мощностью до 30 Вт:
Микросхему ICEA2A после небольшой доработки можно безболезненно заменить менее дефицитной N555. Затруднение может вызвать необходимость самостоятельной намотки трансформатора. Мотать обмотки можно на обычном Ш-образном каркасе от старого перегоревшего трансформатора на 50-100Вт. Первая обмотка — 100 витков эмалированного провода диаметр 0.224мм. Вторая обмотка — 34 витка проводом 0.75мм (площадь сечения допустимо уменьшить до 0.5мм), третья обмотка – 8 витков проводом 0.224 – 0.3мм.
Диммер на тиристорах и динисторах
Светодиодный диммер 220В с нагрузкой до 2А:
Это двухмостовая полуволновая схема состоит их двух зеркальных каскадов. Каждая полуволна напряжения проходит через свою цепочку тиристор-динистор. Глубина скважности регулируется переменным резистором и конденсатором.
При достижении определённого заряда на конденсаторе он открывает динистор, через который течёт ток на управляющий тиристор. При смене полярности полуволны процесс повторяется во второй цепочке.
Диммер для светодиодной ленты
Схема диммера для светодиодной ленты на интегральном стабилизаторе серии КРЕН.
В классической схеме подключения стабилизатора напряжения, значение стабилизации задается резистором, подключённым к управляющему входу. Добавление в схему конденсатора С2 и переменного резистора превращает стабилизатор в некое подобие компаратора.
Преимущество схемы в том, что она совмещает сразу и драйвер питания и диммер, поэтому подключение не требует дополнительных цепей. Недостаток – при большом количестве светодиодов на стабилизаторе будет значительное тепловыделение, что требует установки мощного радиатора.
Как подключить диммер к светодиодной ленте зависит от задач диммирования. Подключение перед драйвером питания светодиодов позволит регулировать только общую освещённость, а если собрать несколько диммеров для светодиода своими руками и установить их на каждый участок светодиодной ленты уже после блока питания, появится возможность регулировать зональное освещение.
Номинал резисторов 100-500 кОм, мощность 1-2 Вт.
Это даже не димер, поскольку ШИМ контроллера тут и близко нет. Но идеально подойдет для тех, кто взял первый раз в руки паяльник.
Читайте также: