Как сделать регулировку напряжения в импульсном блоке питания
Как и обещал, снял ролик, о том, как сделать регулировку напряжения, в импульсном блоке питания 12 вольт 10 ампер.
Эксперимент по изменению выходного напряжения импульсного БП путем изменения обратной связи. Cхема БП .
Иногда требуется от импульсного блока питания, который есть в наличии, получить другое напряжение. В видео показано .
Сегодня в видео задача понизить или повысить выходное напряжение адаптера питания или блока питания. Большинство .
Как регулировать ток в блоке питания и ещё полезная информация. Покажу как регулировать ток в блоке питания и ещё .
В этом видео я рассказываю и показываю как можно своими руками сделать плавную регулировку LED ленты на 12 вольт .
Как и обещал, покажу, как сделать в импульсном блоке питания, на ШИМ тл494 или ка7500 регулировку тока. На самом .
Регулируем напряжение импульсного блока питания от принтера, при помощи ШИМ, через tl431 Много болтовни и теории.
Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.
Последовательность действий по переделке БП ATX в регулируемый лабораторный.
1. Удаляем перемычку J13 (можно кусачками)
2. Удаляем диод D29 (можно просто одну ногу поднять)
3. Перемычка PS-ON на землю уже стоит.
5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.
6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и "типа дроссель" L5.
8. Меняем плохие : заменить С11, С12 (желательно на бОльшую ёмкость С11 – 1000uF, C12 – 470uF).
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 – у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:
10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (. 2-ю ногу), С26, J11 (. 3-ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем-то 🙂 рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.
12. Отделяем 15-ю и 16-ю ноги микросхемы от "всех остальных", для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.
13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.
14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.
Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите тут .
Здравствуйте, сейчас я расскажу о переделке ATX блока питания модели codegen 300w 200xa в лабораторный блок питания с регулировкой напряжения от 0 до 24 Вольт, и ограничением тока от 0,1 А до 5 Ампер. Выложу схему, которая у меня получилась, может кто чего улучшит или добавит. Выглядит сама коробка вот так, хотя наклейка, может быть синей или другого цвета.
Причем платы моделей 200xa и 300x почти одинаковы. Под самой платой есть надпись CG-13C, может быть CG-13A. Возможно, есть другие модели похожие на эту, но с другими надписями.
Выпаивание ненужных деталей
Изначально схема выглядела вот так:
Нужно убрать всё лишнее, провода atx разъёма, отпаять и смотать ненужные обмотки на групповом дросселе стабилизации. Под дросселем на плате, где написано +12 вольт ту обмотку и оставляем, остальные сматываем. Отпаять косу от платы (основного силового трансформатора), не в коем случае не откусывайте её. Снять радиатор вместе с диодами Шоттки, а после того как уберём все лишнее, будет выглядеть вот так:
Конечная схема после переделки, будет выглядеть вот так:
В общем выпаиваем все провода, детали.
Делаем шунт
Делаем шунт, с которого будем снимать напряжение. Смысл шунта в том, что падение напряжения на нём, говорит ШИМ-у о том, как нагружен по току – выход БП. Например сопротивление шунта у нас получилось 0,05 (Ом), если измерить напряжение на шунте в момент прохождения 10 А то напряжение на нём будет:
U=I*R = 10*0,05 = 0,5 (Вольт)
Про манганиновый шунт писать не буду, поскольку его не покупал и у меня его нет, использовал две дорожки на самой плате, замыкаем дорожки на плате как на фото, для получения шунта. Понятное дело, что лучше использовать манганиновый, но и так работает более чем нормально.
Ставим дроссель L2 (если есть) после шунта
Вообще их рассчитывать надо, но если что – на форуме где-то проскакивала программа по расчету дросселей.
Подаём общий минус на ШИМ
Можно не подавать, если он уже звонится на 7 ноге ШИМ. Просто на некоторых платах на 7 выводе не было общего минуса после выпайки деталей (почему – не знаю, мог ошибаться, что не было:)
Припаиваем к 16 выводу ШИМ провод
Припаиваем к 16 выводу ШИМ – провод, и данный провод подаём на 1 и 5 ножку LM358
Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор
Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.
На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.
Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.
Устанавливаем на выход БП конденсаторы и нагрузочный резистор
Нагрузочный резистор можно поставить от 470 до 600 Ом 2 Ватта. Конденсаторы по 500 мкф на напряжение 35 вольт. Конденсаторов с требуемым напряжением у меня не было, поставил по 2 последовательно по 16 вольт 1000 мкф. Припаиваем конденсаторы между 15-3 и 2-3 ногами ШИМ.
Припаиваем диодную сборку
Ставим диодную сборку ту, что и стояла 16С20C или 12C20C, данная диодная сборка рассчитана на 16 ампер (12 ампер соответственно), и 200 вольт обратного пикового напряжения. Диодная сборка 20C40 нам не подойдет – не думайте её ставить – она сгорит (проверено 🙂 ).
Если у вас есть какие либо другие диодные сборки смотрите чтоб обратное пиковое напряжение было минимум 100 В ну и на ток, какой по больше. Обычные диоды не подойдут – они сгорят, это ультро-быстрые диоды, как раз для импульсного блока питания.
Ставим перемычку для питания ШИМ
Поскольку мы убрали кусок схемы который отвечал за подачу питания на ШИМ PSON, нам надо запитать ШИМ от дежурного блока питания 18 В. Собственно, устанавливаем перемычку вместо транзистора Q6.
Припаиваем выход блока питания +
Затем разрезаем общий минус который идёт на корпус. Делаем так, чтоб общий минус не касался корпуса, иначе закоротив плюс, с корпусом БП, всё сгорит.
Припаиваем провода, общий минус и +5 Вольт, выход дежурки БП
Данное напряжение будем использовать для питания вольт-амперметра.
Припаиваем провода, общий минус и +18 вольт к вентилятору
Данный провод через резистор 58 Ом будем использовать для питания вентилятора. Причём вентилятор нужно развернуть так, чтоб он дул на радиатор.
Припаиваем провод от косы трансформатора на общий минус
Припаиваем 2 провода от шунта для ОУ LM358
Припаиваем провода, а также резисторы к ним. Данные провода пойдут на ОУ LM357 через резисторы 47 Ом.
Припаиваем провод к 4 ножке ШИМ
При положительном +5 Вольт напряжении на данном входе ШИМ, идёт ограничение предела регулирования на выходах С1 и С2, в данном случае с увеличением на входе DT идёт увеличение коэффициента заполнения на С1 и С2 (нужно смотреть как транзисторы на выходе подключены). Одним словом – останов выхода БП. Данный 4-й вход ШИМ (подадим туда +5 В) будем использовать для остановки выхода БП в случае КЗ (выше 4,5 А) на выходе.
Собираем схему усиления тока и защиты от КЗ
Внимание: это не полная версия – подробности, в том числе фотографии процесса переделки, смотрите на форуме.
Автор материала: xz
Обсудить статью ЛАБОРАТОРНЫЙ БП С ЗАЩИТОЙ ИЗ ОБЫЧНОГО КОМПЬЮТЕРНОГО
Если у Вас есть ненужный блок питания от компьютера ATX, то его можно легко превратить в лабораторный импульсный регулируемый блок питания, с регулировкой не только напряжения, но и тока, а это значит, что его можно использовать, например, для зарядки или восстановления аккумуляторов.
Блок питания имеет следующие параметры:
- Напряжение – регулируемое, от 1 до 24В
- Ток – регулируемый, от 0 до 10А
Возможны и другие пределы регулировки, по Вашей необходимости.
Для переделки подойдёт любой блок питания ATX, собранный на ШИМ-контроллере TL494. Часто в блоках питания применяется аналог этой микросхемы – KA7500.
Схемы большинства блоков питания похожи, и даже если Вы не смогли найти схему конкретно Вашего – ничего страшного. Первостепенная задача – выпаять из платы вторичные цепи после силового трансформатора, а также цепи, управляющие работой микросхемы TL494. На схеме ниже эти участки подсвечены красным. Перед выпаиванием пометьте выводы вторичной обмотки силового трансформатора по шине 12 вольт. Они нам понадобятся.
Нажмите на схему для увеличения
При этом на плате освободится много места. Печатные дорожки также можно удалить, проведя по ним нагретым паяльником. Некоторые печатные дорожки, идущие от выводов микросхемы, которые мы задействуем в дальнейшем, можно оставить для удобства и припаиваться к ним.
Теперь необходимо собрать новые выходные цепи и цепи регулировки тока и напряжения. К помеченным ранее обмоткам трансформатора шины 12 вольт необходимо припаять сборку двух диодов Шоттки с общим катодом. Сборку можно взять с шины +5В, обычно она имеет следующие параметры: напряжение – 30В, ток – 20А. Диоды Шоттки имеют очень малое падение напряжения, что в данном случае немаловажно. При данном типе выпрямителя можно питать большинство нагрузок.
Если же вам необходим большой ток на максимальном напряжении, данного варианта недостаточно. В этом случае необходимо убрать среднюю точку трансформатора, а выпрямитель сделать из четырёх диодов по классической схеме.
Затем необходимо намотать дроссель. Для этого необходимо взять выпаянный дроссель групповой стабилизации и смотать с него все обмотки. Сердечник дросселя имеет жёлтый цвет, одна сторона с торца покрашена белым. На это кольцо необходимо намотать 20 витков двемя проводами диаметром 1мм впараллель. Если такой толстой проволоки нет, то можно соединить вместе несколько жил более тонкой проволоки и намотать ими параллельно. При такой намотке все выводы на обоих концах обмотки необходимо залудить и соединить. Дроссель с такими параметрами обеспечит ток около 3А. Если нужен больший ток, то дроссель следует намотать десятью параллельными проводами диаметром 0,5мм.
После этого можно приступать к сборке той части схемы, которая отвечает за регулировки. Авторство этого метода принадлежит пользователю DWD, ссылка на тему с обсуждением:
Регулировка работает очень просто. Рассмотрим цепь регулировки напряжения. На вход компаратора (вывод 1) микросхемы TL494 подключен делитель напряжения на двух резисторах. Напряжение на их средней точке должно быть равно приблизительно 4.95 вольтам. Если Вы хотите изменить верхний предел регулировки напряжения блока питания, необходимо пересчитать именно этот делитель. Второй вход компаратора (вывод 2) подключен к средней точке переменного резистора, таким образом здесь также получается делитель напряжения. Если напряжение на выводе 1 компаратора будет меньше напряжения на выводе 2, то микросхема будет увеличивать ширину импульсов, пока напряжения не уравняются. Таким образом и осуществляется регулировка выходного напряжения блока питания.
Регулировка тока работает аналогично, только здесь для контроля протекающего в нагрузке тока используется падение напряжения на шунте Rш. В качестве шунта может быть использован практически любой шунт сопротивлением 0.01-0.05 Ом, например – участок токопроводящей дорожки, шунт от миллиамперметра или несколько SMD-резисторов. Верхний предел регулировки задаётся подстроечным резистором сопротивлением 1кОм. Если подстройка верхнего предела не нужна, то этот резистор следует заменить постоянным сопротивлением 270 Ом, что обеспечит регулировку до 10А.
Фото блока питания приведено ниже. На передней панели расположен экран ампервольтметра, под которым находятся ручки регуляторов напряжения и тока. Выходные клеммы выполнены из гнёзд RCA, приклееных изнутри эпоксидкой. К таким клеммам очень удобно цеплять зажимы типа крокодил. Большой жёлтый светодиод является индикатором включения блока питания, которое осуществляется большим красным переключателем.
В виду того, что корпус для блока питания выбран очень компактный (16*12см), монтаж получился плотный с обилием проводов. В будущем провода можно собрать в жгуты.
Для охлаждения блока питания применён термостат на микросхеме К157УД1, который охлаждает сборку выпрямительных диодов Шоттки и включается по мере надобности автоматически, затем выключается. О его конструкции будет рассказано отдельно.
У многих дома лежит старый принтер с поломанной печатающей головкой, или по каким то иным причинам. Кто то просто выкидывает, не подразумевая что в нем есть хорошие детали, из которых можно что нибудь смастерить.
В данной статье мы рассмотрим то, как сделать своими руками регулируемый блок питания из БП от принтера.
Блок питание из лампочки своими руками
Если понадобился блок питания, нет навыков в радиотехнике. Нашлось решение в том, как сделать своими руками блок питания из энергосберегающей лампочки.
блок питания своими руками 0-30в
Это лабороторный блок питания от 0 до 30вольт на выходе. Регулируется это все подстроечным резистором. Для простоты, индикатор тока и напряжения, был приобретен на всем известном китайском сайте.
зарядное устройство из компьютерного блока питания своими руками
зарядное устройство из компьютерного блока питания своими руками
В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи.
И проще всего взять за основу компьютерный. Данный лабораторный блок питания с характеристиками 0-22 В 20 А переделан с небольшой доработкой из компьютерного АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП - зарядное для автомобильных АКБ.
Блок питания своими руками
Блок питания своими руками
Многие устройства требуют 2-х канального, или как его ещё называют двухполярного питания. В простеёшем варианте можно обойтись предлагаемой схемой блока питания своими руками, которая обеспечивает стабильную регулировку и поддержание при разных токах двухполярного напряжения в диапазоне от ±1.5 В до ±17 В. Она основана на линейных регуляторах напряжения LM317/LM337, которые имеют защиту от короткого замыкания.
Блок питания 0-30 Вольт своими руками
Блок питания 0-30 Вольт своими руками
Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема - блок питания. .Часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.
Схема импульсного блока питания на 600Вт для УНЧ
Схема импульсного блока питания на 600Вт для УНЧ
При сборке мощных усилителей, кто собирал, знает что нужен для питания мощный блок питания, а как известно габариты трансформаторов в них очень дорогие, и при этом добавляют значительный вес.
Блок питания в этой статье обладает мощностью подходящей для многих УНЧ, так как его мощность 600Вт, но можно использовать и в других целях его, можно сделать запросто своими руками.
Схема регулируемого блока питания
Регулируемый блок питания на транзисторах
Каждый радиолюбитель, особенно когда начинает заниматься радиотехникой, хочет собрать своими руками блок питания где можно было бы регулировать напряжение на выходе.
Так как все предворительно собранные схемы, нужно на чем то проверять,и плавно подовать напряжение и просто что бы неприходилось собирать каждый раз блок питания на определенное напряжение.
Схема импульсного блока питания на IR2151-IR2153
Импульсный блок питания на IR2151-IR2153
Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151
Читайте также: