Как сделать раствор 25 аммиака
Основная сфера применения водного аммиака – сельское хозяйство. Он применяется в качестве основного удобрения под все сельскохозяйственные культуры. При внесении аммиачной воды в почву аммиак адсорбируется почвенными коллоидами, поэтому его передвижение незначительно. Впоследствии аммиачный азот нитрифицируется, приобретает большую степень подвижности и мигрирует с почвенным раствором. Водный аммиак повышает количество почвенных микроорганизмов. Водный аммиак рекомендуется к применению на всех типах почв.
Аммиак водный квалификации ЧДА применяют в капельном поливе.
Также водный аммиак используется в химической промышленности для производства азотной кислоты, полимеров, соды, взрывчатых веществ, входит в состав моющих веществ, при производстве красителей и антисептиков, в электролитическом производстве Mn, ферросплавов. Как противоморозная добавка в бетон. В холодильной технике это вещество применяется в качестве хладагента, а при производстве кормов – для их аммонизации.
Используется водный аммиак и в медицине. Нашатырный спирт это 10% раствор водного аммиака.
Массовая доля аммиака (NН3), %,не менее | 25 |
Массовая доля нелетучего остатка, %, не более | 0,002 |
Массовая доля углекислых солей (СО2), %, не более | 0,002 |
Массовая доля общей серы (SO2), %, не более | 0,0003 |
Массовая доля фосфатов (РО4), %, не более | 0,0001 |
Массовая доля хлоридов (Сl), %, не более | 0,0001 |
Массовая доля железа (Fe), %, не более | 0,00002 |
Массовая доля тяжелых металлов (Рв), %, не более | 0,00005 |
Массовая доля суммы кальция и магния (Са), %, не более | 0,0002 |
Массовая доля веществ, востанавливающих КМnO4, в пересчете на 0, %, не более | 0,0008 |
Основная сфера применения водного аммиака – сельское хозяйство. Он применяется в качестве основного удобрения под все сельскохозяйственные культуры. При внесении аммиачной воды в почву аммиак адсорбируется почвенными коллоидами, поэтому его передвижение незначительно. Впоследствии аммиачный азот нитрифицируется, приобретает большую степень подвижности и мигрирует с почвенным раствором. Водный аммиак повышает количество почвенных микроорганизмов. Водный аммиак рекомендуется к применению на всех типах почв.
Аммиак водный квалификации ЧДА применяют в капельном поливе.
Также водный аммиак используется в химической промышленности для производства азотной кислоты, полимеров, соды, взрывчатых веществ, входит в состав моющих веществ, при производстве красителей и антисептиков, в электролитическом производстве Mn, ферросплавов. Как противоморозная добавка в бетон. В холодильной технике это вещество применяется в качестве хладагента, а при производстве кормов – для их аммонизации.
Используется водный аммиак и в медицине. Нашатырный спирт это 10% раствор водного аммиака.
Аммиак является самым распространенным соединением азота. Он имеет формулу NH3. Это бесцветны газ с резким, едким запахом, обладающий высокой степенью токсичности. Поэтому при работе с ним необходимо использовать индивидуальные средства защиты. В чистом виде используется редко. Чаще всего применяется водный раствор - Аммиак водный, что существенно снижает агрессивные свойства.
Аммиачная вода это – раствор синтетического или коксохимического аммиака в воде. Имеет вид прозрачной жидкости, иногда желтоватого оттенка. Имеет резкий запах.
Аммиачная вода содержит до 30 % аммиака, то есть 24,6 % азота и 70 % воды. При температуре ниже +21,10°C не повышает давление, а при увеличении температуры лишь слегка повышает его. Один литр аммиачной воды весит 888 г и содержит 220 г азота.
Аммиак может улетучиваться из аммиачной воды.
Водный аммиак вызывает коррозию цветных металлов и их сплавов, однако чёрные металлы и чугун устойчивы к воздействию водного аммиака.
Резина также не подвержена воздействию водного аммиака.
Аммиак водный применяется:
Использование в различных отраслях промышленности чрезвычайно широкое. Опишем наиболее массовые сферы потребления
- Является очень важный компонент в производстве различных удобрений. С его помощью делают аммиачную селитры, нитроаммофоску, карбамид. Также он участвует в создании азотной кислоты.
- Используется в военной и горнорудной промышленности для производства различных взрывчатых и инициирующих веществ.
- Применяется в создании мощных красителей, используемых для окрашивания тканей и древесины.
- Является элементом реакций при получении металлического марганца и многокомпонентных ферросплавов.
- Как ингибитор коррозии и применяется при удалении накипи и отложений в системах водоподачи как вспомогательный компонент;
- В медицинской сфере в 10% концентрации он получил название всем известного нашатырного спирта. Также используется для проб высокоточных анализов.
Различают Аммиак водный ЧДА и технический.
Меры предосторожности:
В замкнутых объёмах над водными растворами аммиака могут образоваться взрывоопасные смеси паров аммиака с воздухом.
Вызывает раздражение кожи и слизистых.
Растворителем, в котором работают почти все известные живые системы, служит окись водорода, или вода (H2O). В молекуле воды атом кислорода соединен с двумя атомами водорода одинарными ковалентными связями.
Раствори́мость — способность вещества образовывать с другими веществами однородные системы — растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц.
Электроотрицательность — сила, с которой атом в составе молекулы оттягивает на себя общие с другим атомом электроны, образующие ковалентную связь. Это понятие ввел Лайнус Полинг (Linus Carl Pauling). Самый электроотрицательный элемент — фтор, за ним на шкале электроотрицательности следует кислород. Иными словами, кислород превосходит по электроотрицательности все другие атомы, за исключением фтора (который в биологической химии практически не встречается). Запомним этот факт.
Электроотрицательность одинаковых атомов по определению равна. Если между двумя одинаковыми атомами есть ковалентная связь, то образующие ее электроны никуда не смещены (в рамках старинной планетарной модели атома можно сказать, что они находятся точно посредине между атомами, как на картинке). Такая ковалентная связь называется неполярной.
Если ковалентную связь образуют два разных атома, то общие электроны смещаются к тому из них, у которого выше электроотрицательность. Такая связь называется полярной. При очень большой разнице в электроотрицательности она может даже стать ионной — это случится, если один атом полностью “отберет” у другого общую пару электронов.
Связь между водородом и кислородом в молекуле воды — типичный пример ковалентной полярной связи. Электроотрицательность кислорода намного выше, поэтому общие электроны смещены к нему. В результате на кислороде возникает маленький отрицательный заряд, а на водороде маленький положительный; эти заряды принято обозначать буквой δ (“дельта”).
Связи кислорода с водородом или углеродом (H-O или C-O) — всегда полярные. Молекулы, в которых много таких связей, несут многочисленные частичные заряды, отрицательные на кислороде и положительные на водороде или углероде. В то же время связь между углеродом и водородом (C-H) считается неполярной: разница в электроотрицательности между этими элементами так мала, что смещение электронов незаметно. Например, молекулы углеводородов в силу этого полностью неполярны, они не несут никаких частичных зарядов ни на каких атомах.
При наличии полярных связей между водородом и кислородом частичные заряды на этих атомах (отрицательные на кислороде и положительные на водороде) притягиваются друг к другу, образуя водородные связи. Эти связи гораздо слабее ковалентных, но могут давать сильный эффект, если их много. Например, именно из-за колоссального количества водородных связей у воды очень высокая теплоемкость — ее трудно нагреть и трудно остудить. Строго говоря, водородная связь может образоваться не только с кислородом, но и с другими электроотрицательными атомами (например, с азотом или фтором).
Любые заряженные частицы в водном растворе гидратируются, то есть окружаются молекулами воды — конечно, по-разному ориентированными в зависимости от того, положительная это частица или отрицательная. Любые ионы, растворенные в воде, на самом деле присутствуют там в гидратированном состоянии, то есть с водной оболочкой. На картинке для примера показана растворенная поваренная соль (NaCl) — образец чисто ионного вещества.
Полярные молекулы (а тем более ионы) хорошо взаимодействуют с водой, образуя с ней водородные связи и (или) подвергаясь гидратации. Такие вещества хорошо растворяются в воде и называются гидрофильными. Неполярные молекулы взаимодействуют с водой гораздо слабее, чем друг с другом. Такие вещества плохо растворяются в воде и называются гидрофобными. Типичные гидрофобные вещества — углеводороды. Типичные гидрофильные вещества — спирты, такие как этанол или показанный на картинке глицерин. Вообще кислородсодержащие соединения углерода, как правило, гидрофильны, если только в них нет совсем уж огромных углеводородных радикалов.
Могут ли подойти для жизни другие растворители, кроме воды? Ответ — да. Например, двуокись углерода (CO2) при более высоких давлениях, чем наше атмосферное, становится жидкостью и представляет собой хороший гидрофильный растворитель, в котором успешно идут многие биохимические реакции. В этом растворителе могут жить даже земные микроорганизмы: например, на дне Окинавского желоба в Восточно-Китайском море обнаружено целое озеро жидкой углекислоты, в котором постоянно живут довольно разнообразные бактерии (Inagaki et al., 2006).
Некоторые исследователи предполагают, что океаны жидкой двуокиси углерода могут существовать на планетах-“суперземлях” с массой, в несколько раз превосходящей массу Земли (Budisa, Schulze-Makuch, 2014). На картинке — художественное изображение планеты GJ1214b в созвездии Змееносца.
На крупнейшем спутнике Сатурна — Титане — есть углеводородные озера и даже моря, состоящие из метана (CH4), этана (C2H6) и пропана (C3H8). Это гидрофобный растворитель, в котором тоже иногда предполагают существование жизни, хотя прямых подтверждений тому пока нет. На картине — пейзаж Титана. Жидкой воды на поверхности Титана нет, там слишком холодно.
Аммиак (NH3) — гидрофильный растворитель, образующий много водородных связей, в данном случае между водородом и азотом, и напоминающий воду по физико-химическим свойствам. На более холодных планетах, чем Земля, аммиак находится в жидком состоянии и вполне может быть средой для жизни.
Теоретически возможно существование холодных землеподобных планет с аммиачными океанами (на картинке художественное изображение такой планеты). Есть ли там жизнь, никто не знает. Но почему бы и нет? Если насчет альтернатив углеродной жизни есть сомнения, то углеродную жизнь в неводном растворителе представить гораздо легче.
Можно придумать и другие экзотические варианты — например, океан из плавиковой кислоты (HF) на планете, описанной в фантастической повести Ивана Ефремова “Сердце Змеи”. “Люди Земли увидели лиловые волны океана из фтористого водорода, омывавшие берега черных песков, красных утесов и склонов иззубренных гор, светящихся голубым лунным сиянием…” Возвращаясь к земной биохимии, будем помнить, что она — не единственная теоретически возможная.
1)Какую навеску магнитного железняка нужно взять для гравиметрического анализа, что бы процентное содержание Fe3O4 в образце численно соответствовало массе осадка Fe2O3 умноженной на 100?
2) Требуется приготовить 2,0 литра 1%-го раствора аммиака из 25%-ного раствора. Сколько миллилитров раствора аммиака и воды нужно взять?
3) По каким формулам можно найти содержание хрома в стали?
Если хоть что ни будь в этой области вы знаете, помогите пожалуйста, беду очень благодарна.
У кого есть ответы на практичку?
Получение аммиака и опыты с ним. Ознакомление со свойствами водного раствора аммиака
Получение аммиака и растворение его в воде.
1. В фарфоровой ступке хорошо перемешайте приблизительно равные объемы кристаллического хлорида аммония NН4Сl и порошка гидроксида кальция Са(ОН)2 (опыт удается лучше, если известь слегка влажная). Приготовленную смесь насыпьте в пробирку на 1/3 ее объема. Закройте пробирку пробкой с газоотводной трубкой, конец которой опущен в другую сухую пробирку, закрепленную в штативе открытым концом вниз (рис. 19). Нагрейте смесь в пробирке.
2. Как только почувствуете острый запах (нюхать осторожно!), пробирку с газом, не переворачивая, закройте пробкой, погрузите ее в сосуд с водой и откройте пробку.
3. После заполнения пробирки водой закройте ее отверстие пробкой и выньте пробирку из воды. В полученный раствор поместите красную лакмусовую бумагу — она синеет. Затем добавьте к раствору несколько капель раствора фенолфталеина.
Задания. 1. О выделении какого газа свидетельствуют ваши наблюдения? Напишите уравнение соответствующей реакции. 2. Какое вещество образуется при растворении полученного газа в воде? Какие наблюдения подтверждают этот вывод? Напишите уравнение данной реакции.
Горение аммиака в кислороде. Соберите прибор для получения газов. Пробирку со смесью хлорида аммония и гидроксида кальция слегка нагрейте. Газоотводную трубку введите в стеклянный цилиндр с кислородом и при помощи лучинки подожгите газ (рис. 20).
Задания. 1. Какие вещества образуются в процессе горения аммиака? Напишите уравнение соответствующей реакции, если известно, что при горении аммиака в кислороде выделяется свободный азот. 2. Подчеркните в уравнении одной чертой окислитель, а двумя — восстановитель.
Взаимодействие аммиака с кислотами. Соберите прибор, как для предыдущего опыта. Пробирку со смесью хлорида аммония и гидроксида кальция слегка нагрейте. Газоотводную трубку последовательно введите в пробирки, в которых налито по 1 мл концентрированных азотной, соляной и серной кислот. Конец газоотводной трубки должен находиться на расстоянии 5 — 6 мм от поверхности кислоты.
Читайте также: