Как сделать радужную голограмму
Давным-давно, в 1968 году, когда я еще учился в 10 классе, мне посчастливилось побывать в лаборатории голографического кино НИКФИ. Виктор Григорьевич Комар, возглавлявший тогда самое передовое направление в изобразительной голографии, показал мне крупноформатные голограммы, кадры из голографических кинороликов, лазеры и познакомил с коллективом своих талантливых сотрудников. Кроме сногсшибательных впечатлений я привез домой коробочку фотопластин ПЭ-2 для регистрации отражательных голограмм.
Я долго искал, где можно раздобыть хоть какой-нибудь лазер, и, в конце концов, нашел его в политехническом институте. Выпросил прибор на пару дней и, не мешкая, приступил к созданию голограммы по схеме Юрия Денисюка.
Притащил домой бордюрную плиту из бетона и заворотил ее на свою кровать (для гашения вибраций). Из тисочков, струбцин и линз от старого микроскопа соорудил схему записи. А в качестве первого объекта взял серебряную солонку, наполненную доверху солью. Проявитель составил по рецепту, записанному в НИКФИ, благо химикатов для фотографии дома было в достатке. Рассчитал экспозицию. Она составила около 5 минут.
Со второй попытки на фотопластинке будь-то из гиперпространства, появилась копия солонки. Вы не представляете, я чувствовал себя в тот момент Эйнштейном, Капицей, не меньше. В будущем эти юношеские впечатления определили многое в моей жизни.
Сейчас, спустя 35 лет с того знаменательного для меня вечера, я с сожалением отмечаю, что до сих пор любительской голографии днем с огнем не отыщешь. И дело здесь не в цене лазеров или сложности оборудования, отсутствия фотоматериалов в продаже. Просто для того, что бы в домашних условиях заниматься изготовлением голограмм, нужно не только физику хорошо знать, но и быть одержимым идеей писать пространство на плоскости.
Немного физики.
Принцип голографической записи изображений заключается в том, что картина интерференции стоячих световых волн высокой когерентности двух источников может быть записана на фоточувствительной эмульсии. Дифракция световых волн одного из этих источников, на структуре, зафиксированной в проявленной эмульсии, восстанавливает волновой фронт второго источника. Другими словами дифракция и интерференция инвариантны.
Представьте себе бассейн, наполненный водой. В бассейне с помощью широкой доски мы создаем волны. Хорошие волны, с очень равномерным шагом. Волны достигают противоположной стенки бассейна, отражаются и бегут обратно. В результате наложения двух потоков волн мы получим удивительную картину. Гребни будут подниматься и опускаться, но бега их мы не увидим. И самое интересное, между гребнями окажутся точки, которые не будут ни подниматься, ни опускаться относительно уровня воды в спокойном бассейне. Это и есть стоячие волны. А эффект, вызвавший это явление, физики называют ИНТЕРФЕРЕНЦИЕЙ.
Свет – это тоже волна, только электромагнитная. И здесь будет аналогичная картина.
Картину из света и темноты мы научились фиксировать фотографическими методами. В объеме фотоэмульсии можно записать картину стоячих световых волн. Это и будет голограмма. Но представьте себе, что фотопластинка или объект во время экспозиции немного двигались (на величину полуволны). Картина интерференции будет смазана, а это значит, что голограммы мы просто не получим.
Для экспозиций порядка минуты мы должны обеспечить высокую стабильность схемы. Это первейшее условие получения голограмм с помощью маломощных лазеров.
Второй не менее важный момент. Частота световой волны (как и волны в бассейне) должна оставаться постоянной, иначе мы получим не стоячие, а бегущие волны интерференции. Картинку в этом случае зафиксировать так же не удастся. Вот почему для записи голограмм нужны лазеры – источники излучения стабильной частоты. Физики называют их источниками высоко когерентного излучения.
Каждая точка фотоэмульсии будет фиксировать сложнейшую паутину интерференционной картины. Если осветить проявленную эмульсию светом того же источника, голограмма восстановит причудливую форму светового фронта, который при записи голограммы отражался от реального объекта. Зрительное восприятие восстановленной световой волны неотличимо от наблюдения реального объекта.
Но самое удивительное, что голограммы, записанные по этой схеме можно восстанавливать источником белого света. Дело в том, что пространственные дифракционные структуры избирательны к спектру излучения. Картинка будет восстановлена только теми частотами волн, которые использовались при записи, а остальные лучи поглотятся голограммой.
Не так страшен черт, как его малюют.
Итак, мы выяснили, что для успешной записи отражательной голограммы по схеме Денисюка требуется лазер, например гелий неоновый мощностью от 10 до 25 миливат. Платформа, защищенная от вибраций, линза для расширения лазерного пучка, держатель фотопластины, зеркала с наружным отражающим покрытием (иначе отражение луча от двух отражающих поверхностей зркала вызовет низкочастотную интерференцию, которая будет выглядеть ввиде полос на голограмме). И конечно же нужны фотопластины для записи голограмм.
Фотопластинку такого формата легко закрепить. Экспозиции при использовании маломощного лазера составят от 15 до 45 секунд. Чем короче экспозиция, тем меньше вероятность смещения интерференционной картины при записи голограммы, а вероятность успеха выше.
Опыт работы в области голографии доказал, что самое чувствительное к вибрациям звено включает в себя объект и фотопластину. Следовательно, крепление этих элементов друг относительно друга должно быть особенно надежным. Второе по чувствительности к смещениям звено – линза для расширения лазерного пучка, третье значительно менее чувствительное – сам лазер.
Исходя из этого будем строить оптическую схему. Самая простая и надежная схема - вертикальная, когда предмет и фотопластина фиксируются силой собственной тяжести, а их неподвижность во время съемки обеспечиваются хорошей виброизоляцией.
Установка будет состоять из жесткой платформы (1), опирающейся на пневматические опоры (2) для гашения внешних вибраций, регистрируемого предмета (6), держателя фотоплатины (4) в виде трех точек опоры (3), экрана (5) для защиты торца фотопластины от попадания на него лазерного излучения (свет, проникающий в торец фотопластины многократно переотражается и создает неприятные помехи), лазера, зеркала с наружным отражающим покрытием (7) и короткофокусной линзы (8) для формирования когерентного пучка света, освещающего сцену.
Как получить голограмму?
Глубина сцены, которую можно записать на голограмме определяется так называемой длиной когерентности лазера. Обычно она составляет от сантиметра (для лазерных указок) до четверти метра (для гелий неоновых лазеров).
При записи голограммы с помощью непрерывного лазера малой мощности (а именно такие приборы по цене доступны для простого любителя) особое внимание следует уделять вопросам виброизоляции, ибо в масштабах интерференционной картины даже в спокойной квартире буквально штормит. Если профессионалы могут позволить себе голографические столы на пневматических опорах весом в несколько тонн, то в обычной квартире без особого ущерба для остальных жильцов можно выделить для занятия голографией площадь не более письменного стола.
Рекомендую для создания скелета малогабаритной голографической установки использовать трубы из алюминия, заполненные вязким гудроном. Практически все детали установки следует проектировать в виде тел вращения, т.к. токарная обработка много дешевле фрезерной, а тем более - шлифовальной.
Подобная конструкция позволяет из одинаковых элементов, как из конструктора, собирать самые разнообразные конфигурации достаточной жесткости. Кстати, многие считают жесткость главным критерием работоспособности установки, но это не так. Даже чугунный стол будет вибрировать в резонанс слабым звуковым колебаниям благодаря высокой упругости материала. Другое дело, когда колебания будут быстро затухать. Благодаря вязкому наполнителю, резонансов не будет, а, следовательно, продолжительных колебаний так же не возникнет.
Запись голограммы во встречных пучках более всего подходит для новичков. Фотопластинка крепится перед объектом и освещается расходящимся лучом лазера. Проще не придумаешь. Но обеспечить стабильность всех элементов простой, на первый взгляд, схемы не так-то просто.
Как объекты, так и фотопластинка при записи голограмм малого формата прекрасно фиксируются на трех точках опоры под собственной тяжестью (следует только помнить, что вектор силы тяжести должен проходить примерно через центр этого треугольника, иначе самая малая вибрация приведет к колебаниям этих элементов).
Для трубчатого каркаса держатель голографической фотопластинки будет выглядеть примерно так.
Важно не допускать попадания лазерного пучка в торец стекла фотопластинки, так как это приведет к переотражениям и испортит голограмму. Для этого фотопластинку следует утопить ниже поверхности металлического держателя на 1-2 миллиметра.
Запись радужных голограмм - хорошее начало для будущих художников, желающих работать в технике голографии.
Тот, кто хоть раз в жизни самостоятельно записал голограмму, не забудет, как во время сушки из чернеющей плоскости мокрой фотопластинки рождается сверкающая бликами объемная сцена. Но фиксировать грудку монет, фотоаппарат, статуэтку, часы или свой мобильный телефон скоро надоест, и захочется сотворить что-то потрясающее воображение.
Схема Денисюка достаточна для записи множества интересных эффектов, например, различного рода интерферограмм, последовательной регистрации нескольких предметов с целью получения эффекта фантастического пересечения материальных объемов, создание локальной усадки эмульсии для псевдоокрашивания неглубоких сцен с черным фоном и ряд других эффектов. Но поистине фантастические возможности для создания выразительных художественных приемов, вплоть до создания цветных композиций, дает техника радужной голограммы.
Схема записи мастер-голограммы
1 - лазер, 2 - цилиндрическая линза (стеклянная палочка), 3 и 5 - зеркала, 4 - светоделитель в виде дифракционной решетки, который можно синтезировать голографическим способом (при этом требуется максимально снизить шумы), 6 - диффузор в виде матового стекла, 7 - фотопластинка, 8 - регистрируемая сцена.
Сперва перечислю преимущества, которые дает приведенная схема записи исходной голограммы в виде узкой горизонтальной полосы:
- низкая частота интерференционной картинки позволяет использовать более высокочувствительные фотоматериалы и на порядки сократить время экспозиции;
- получать рассеянное освещение для более эффектной регистрации зеркальных и сильно бликующих поверхностей;
- записывать псевдоцветные композиции;
- значительно снизить контраст интерференционных полос при записи лазерными диодами (этому способствует протяженность освещающей поверхности диффузора);
- приведенная схема имеет меньшее количество элементов по сравнению с классической схемой записи по Бентону.
Схема записи радужной копии.
1 - лазер, 2 - цилиндрическая линза, 3 и 5 зеркала, 4 - дифракционная решетка, 6 - сферическая линза, 7 - мастер-голограмма, 8 - большая цилиндрическая линза с фокусом в плоскости мастер - голограммы, 9 - фотопластинка для записи радужной копии.
Создание радужной голограммы происходит в две ступени:
- запись мастер - голограммы;
- регистрация радужной копии (мастер при этом следует развернуть так, что бы получить действительное изображение в плоскости цилиндрической линзы)
Качественную радужную голограмму на толстой эмульсии (так называемую 3D голограмму) можно записать только с использованием большой цилиндрической линзы, которая позволяет восстанавливать действительное изображение апертуры одного цвета без неприятного изменения яркости изображения по всей апертуре (имеется в виду эффект Брегга в толстой эмульсии). Большую цилиндрическую линзу найти не просто, а заказать - дорого. Лучше ее сделать самому в виде жидкостной линзы, вроде той, что использовалась в первых телевизорах. Для этого можно изогнуть лист органического стекла, обрезать его так, что бы можно было вставить в прямоугольный черный каркас и загерметизировать. Переднюю плоскую поверхность линзы можно сделать из отмытой от эмульсии голографической пластины. Заливать в полученную из прозрачных стенок оптическую емкость лучше дистиллированную воду. Крепить фотопластинку для регистрации радужной копии можно прямо к плоскому стеклу, смоченному прозрачной жидкостью. Капиллярный эффект сможет фиксировать фотоматериал лучше любой пружины.
Приведенная схема допускает использование самых простых оптических элементов, так как после отбеливания дифракционный шум от пылинок практически не виден, а яркость изображения будет отменной.
Запись одной радужной копии с двух и более мастер - полосок, смещенных по вертикали (рассматриваем их положение в координатах схемы), создает эффект разноцветных элементов синтезированной сцены.
Восстанавливать такие радужные голограммы можно обычной лампой накаливания как отражательные, прижав сзади обычное зеркало.
И если у Вас есть одновременно и дар художника, и увлеченность естественными науками - ничто не помешает Вам творить настоящие шедевры .
СРОЧНОЕ
ИЗГОТОВЛЕНИЕ
ГОЛОГРАММ.
г.Москва, Россия
Голограммы
на стекле и на плёнке.
Голографические портреты и наклейки.
Пломбы разрушаемые при вскрытии.
Голографические стикеры и фольга
горячего тиснения полиграфическая
Создает плавающие текстовые строки!
Плавающие значки!
Быстрый и простой в использовании.
Простой API для разработчиков.
Преобразование изображения в голограмму с помощью одной команды.
Вы можете создавать свои собственные анимации!
Включает в себя анимированные цвета радуги!
Поддерживает любой UTF-8 символ.
Может отображать количество игроков онлайн на сервере BungeeCord (поддерживает RedisBungee)
Поддержка Bukkit 1.6.4, 1.7.2, 1.7.9, MCPC + 1.6.4 и 1.7.
Плагин HolographicDisplays поддерживает платформы: PC
Видео
Ссылки
Команды
/hologram (or / hd) - Главная команда плагина. Показывает помощь, версии плагина и разработчика.
/hd help-Показывает основные команды плагина.
/hd create - создает новую голограмму с заданным именем в вашем регионе. Это имя используется в других командах.
/hd delete - Удаляет голограмму.
/hd list [page] - перечисляет все существующие голограммы и их расположение.
/hd near - Перечисляются все голограммы рядом с вами в заданном радиусе.
/hd teleport - телепортирует вас к голограме.
/hd movehere - Перемещение голограммы к вам (координаты ног).
/hd edit - показывает команду для изменения существующей голограммы.
/hd addline
- Добавляет строку текста в голограммы.
/hd removeline - Удаляет линии (сверху вниз).
/hd setline - Меняет линии (сверху вниз).
/d insertline
- вставляет строку после линии (сверху вниз). Если 0, то он будет добавлен перед первой строкой.
/hd readtext - Читает строки из текстового файла. Создайте файл (например logo.txt) и поместите его в папку плагина. Создайте новый голограмму (например с именем "тест"), а затем сделать / hd readlines тест logo.txt, чтобы вставить строки текстового файла в поток голограммы.
/hd readimage - Считывает изображения из папки плагина, с учетом ширины (автоматически изменен, максимальная ширина составляет 100 пикселей). Символ, будет взят из config.yml.
/hd fix - випраляе неправельно падающий свет, создавая блок glowstone в правильном месте. После этого ваши голограммы будут ярко светить днем и ночью.
/hd save - сохраняет все голограммы к базе данных, (хотя плагин сохраняет ии автоматически).
/hd reload - Перезагрузка плагина и баз данных.
Minecraft StatisticЭто страница плагина HolographicDisplays. Вы можете задать интересующие вопросы здесь, а наше сообщество постарается помочь вам!
HolographicDisplays — всем известный плагин, который есть на любом сервере. Данный плагин добавить на ваш сервер возможность создавать голограммы, в которых вы сможете написать абсолютно любой текст, например помощь по серверу, основные команды или просто написать цены на донат.
Основные команды плагина HolographicDisplays:
Основные права плагина HolographicDisplays:
holograms.* — Доступ ко всем командам.
holograms.update — Разрешить получать уведомление, что пора обновить плагин.
holograms.команда — Доступ к определенной команде.
(Пример: holograms.create — Разрешить создавать голограммы).
Скриншоты плагина HolographicDisplays:
Пример конфига плагина HolographicDisplays:
Установка плагина HolographicDisplays:
Изменения в 3.0.0 🎉
Holographic Displays v3 включает новые возможности, новый API разработчика, обширный рефакторинг кода и внутреннюю оптимизацию. Некоторые конфигурационные файлы изменились, будет создана резервная папка (с именем "old-files"), и они будут автоматически обновлены до нового формата.
Это бета-релиз, плагин был протестирован, но ожидаются ошибки. Пожалуйста, сообщайте о них на трекере проблем.
Стараюсь оставлять ссылки только на проверенные крупные магазины, из которых заказываю сам. Также по первые ссылки ведут по возможности на минимальное количество магазинов, чтобы минимально платить за доставку. Если какие-то ссылки не работают, можно поискать аналогичную железку в каталоге Ардуино модулей . Также проект можно попробовать собрать из компонентов моего набора GyverKIT .
Делаем простое приспособление для просмотра 3D голограмм на вашем смартфоне или планшете. Вы когда-нибудь хотели лицезреть видео или смотреть картинки в 3D без очков? Из этого урока вы узнаете, как сделать очень простое устройство для просмотра 3D-голограмм на вашем смартфоне или планшете. Все, что вам нужно для этого, — пять минут вашего времени. И да, сегодня нам не понадобятся Ардуино, Raspberry и другие платы.
Как работает 3D-голограмма из пирамиды?
Голографическая пирамида — это простое устройство, которое может быть изготовлено путем создания из листа пластика фигуры в форме пирамиды с обрезанным верхом. Устройство создает трехмерную иллюзию для зрителя и делает изображение или видео таким, как если бы оно находилось в воздухе. Работает по принципу Призрака Пеппера (англ. википедия). Четыре симметрично противоположных варианта одного и того же изображения проецируются на четыре грани пирамиды. В принципе, каждая сторона проецирует изображение, падающее на нее, в центр пирамиды. Эти проекции работают в унисон, образуя целую фигуру, которая создает трехмерную иллюзию.
Правила соблюдения размеров
В сетях сегодня можно найти специальное видео для 3D-голограммы. Анимационные картинки, обычно изображенные на черном фоне, — основа для 3D-проекции, которая появится в прозрачной пирамиде. Нужно скачать их и включить на экране устройства. Для проверки соответствия размеров нужно сделать следующее.
- Расположить смартфон (в данном случае — планшет) вверх экраном.
- Поставить призму меньшим основанием на экран.
- Посмотреть на изображение сверху. Маленький квадрат (срез верхушки пирамиды) должен быть примерно в 2 раза меньше расстояния между движущимися картинками.
- Само изображение в целом не должно выходить за пределы большего квадрата.
- Высоту призмы проверяем по углу наклона ребра — примерно 45°. Тогда изображение не окажется слишком высоко, выходя за пределы прозрачной конструкции, или низко.
Если все параметры правильные, призму для монитора можно считать готовой и годной к использованию при воспроизведении объемного изображения.
Картинка, созданная в центре призмы, привлечет внимание и ребенка, и взрослого.
Создаем пирамиду для 3D-голограмм
1. Распечатайте шаблон, показанный ниже, на листе бумаги формата A4.
2. Обведите форму на пластиковом листе, используя линейку и ручку. Для трапециевидного шаблона выделите четыре аналогичных контура на пластиковом листе. Теперь аккуратно вырежьте контуры режущим лезвием и линейкой. Постарайтесь сделать свои разрезы как можно более точными для создания более идеальной пирамиды.
3. Если вы использовали шаблон распечатки: очень легко надрежьте красные края с помощью режущего лезвия. Это позволит вам лучше сложить края и сформировать форму пирамиды. Склейте открытые края листа, используя прозрачную ленту.
Если вы использовали трапециевидный шаблон: соедините четыре края, чтобы сформировать форму пирамиды. Соедините их. В любом случае, в итоге у вас будет пирамида, подобная той, что показана ниже.
4. Вот и все! Вы сделали себе пирамиду для будущих голограмм! Все, что вам нужно сделать сейчас, это воспроизвести голограмму на вашем телефоне. Поместите голограмму в центре экрана, как показано на рисунке ниже, и наслаждайтесь шоу. Не забудьте выключить свет в комнате, прежде чем начать воспроизведение видео.
5. Теперь самое важное! Можно найти множество голограмм на YouTube. То что может получиться — вы можете увидеть на видео ниже.
Где брать готовые изображения для создания голограммы
Картинки для воспроизведения голограмм должны быть не обычные, а специально подготовленные. Как описано выше, изображение должно быть симметричным в пределах квадрата и состоять из 4 одинаковых элементов, расположенных крестообразно. Можно самостоятельно выполнить такую заготовку и придать ей движение, проявить художественные способности, выражая свои мысли.
Прежде чем пытаться это сделать, нужно найти готовые анимации и видео для просмотра голограмм. Затем сделать призму и приобрести первый навык по созданию 3D-изображений. Вспоминая принцип действия, будет легче воплотить собственные задумки.
Голограмма: как сделать карточку дома
Приступаем к работе:
- Самое сложное — это выбрать подходящее место. Таким должна быть темная комната, где нет вибраций, сквозняков и даже скрипучих половиц. Проверить пригодность помещения можно, поставив на стол прозрачную бутылку с водой. Просветите через 5 минут верхний уровень воды фонариком, чтобы он отобразился на ближней стене — нет движений, значит, можно начинать.
- Для работы выберите нешатающийся стол или же расположитесь на полу.
- Предмет для будущей голограммы уложите в лоток с песком или на коврик для компьютерной мыши.
- Теперь в 30 см от героя изображения разместите лазерную указку, воткнув ее прищепкой в стакан с солью, как на фото. Рекомендуется использовать красные голографические диоидные лазеры с регулируемой линзой.
- Снимите регулируемую линзу — луч обязательно должен расширяться, принимая в конце форму эллипса, и полностью освещать предмет.
- Выключите свет — на вашу систему не должны попадать прямые лучи. Для работы поставьте ночник под столом или немного приоткройте дверь — должны быть сумерки, в которых невозможно читать.
- Расположите книгу между лазером и предметом — она должна полностью скрывать последний от луча.
- В самом темном месте комнаты откройте одну голографическую пластинку, перпендикулярно установите ее рядом с предметом, как на изображении.
- Осторожно уберите книгу-заслонку, чтобы не вызвать вибраций, луч лазера должен освещать предмет и картинку в течение 10 секунд.
- Верните заслонку на место.
- Осталось обработать пластину: развести сухой светочувствительный порошок с дистиллированной водой в 2 емкостях, получив проявитель и осветлитель. Продержите пластину в первом 20 секунд, промойте ее в емкости с чистой водой 30 секунд, потом опустите в осветлитель на 20 секунд и снова полминуты промывайте в чистой воде.
- Высушите пластинку феном, держа ее в вертикальном положении, но не перегревайте ее.
- После полного высыхания можно ознакомиться с результатом при помощи точечного освещения. Ни в коем случае не используйте для этого люминесцентные лампы и матовые колбы, чтобы не испортилась голограмма.
Необходимые элементы
Чтобы увидеть 3D изображение на смартфоне для начала понадобится изготовить 3D пирамидку. Какие же элементы необходимы для её изготовления:
- простой карандаш;
- маркер;
- линейка (необязательно длинная);
- бумага (желательно в клетку, чтобы не использовать транспортир);
- ножницы (чтобы вырезать трафарет);
- нож (идеально подойдёт канцелярский);
- скотч (прозрачный, неширокий) или клей для пластмассы;
- пластиковые контейнеры от CD дисков (прозрачные).
Чертим трапецию
После того как подготовлены все необходимые элементы, следует приступить к черчению трапеции (трафарета). Для этого берём лист бумаги и с помощью линейки и карандаша чертим трапецию с такими сторонами:
- низ – 6 сантиметров;
- верх – 1 сантиметр;
- высота – 3,5 сантиметра.
После окончания берём ножницы и вырезаем получившуюся трапецию. Это будет трафарет с помощью которого будут сделаны стены будущей пирамидки.
Вырезать трапеции из коробочек от CD (4 штуки)
Это самый трудоёмкий этап изготовления пирамидки, требующий повышенного внимания. Причина трудоёмкости в том, что пластик, из которого изготовлена коробка CD диска очень хрупкий и при сильном давлении может начать трескаться.
- Разбираем контейнер от диска.
- Прикладываем получившийся трафарет.
- Обводим трапецию маркёром.
- Берём линейку и нож.
- Приложить линейку по линии маркёра и аккуратно провести по ней ножом.
- После появления бороздок линейку можно убрать.
- Вырезать трапецию.
- По образцу получившейся трапеции вырезать ещё 3 штуки. Всего должно быть 4.
Немного истории
Политехнический институт в Лондоне — научное учреждение, где работал Д. Г. Пеппер в 1862 году. Изобретатель Г. Диркс в то же время практиковал технику появления призрака на сцене в спектакле. Он безуспешно пытался продать театрам свою идею. Это требовало полной перестройки сцены, и эффект был признан слишком дорогостоящим. Тогда Диркс основал стенд в политехническом институте, где его наблюдал Пеппер. У ученого появилось намерение модифицировать метод, после чего явление начали использовать в кинотеатрах. Так феномен приобрел значительный успех, и мир узнал о нем подробно. Усовершенствование явления Д. Пеппером привело к тому, что оно получило его имя, а Диркс передал ему все финансовые права в совместном патенте. Люди, присутствуя на различных шоу, позволяли себя обманывать, так как считалось, что явление создано гениями.
Положить конструкцию на телефон
Теперь остался последний шаг и можно будет увидеть 3D голограмму в середине пирамидки. На первых секундах после запуска видео появляется рисунок в виде крестика, по граням которого надо поместить изготовленную пирамидку. Для более точного размещения лучше нажать паузу и выставить как надо.
Вот так с помощью подручных средств вы сможете изготовить пирамидку за 5 минут, в центре которой вы увидите 3D изображение. Благодаря разнообразию доступных видео можно посмотреть удивлять окружающих разными голограммами и даже использовать их в качестве ночника.
(24 голоса, среднее: 4 из 5)
Поделитесь с друзьями!
Современное применение
Современными примерами сегодня являются, например, прозрачные и полупрозрачные достопримечательности в парках Уолта Диснея. Мир знает их как крупнейшие реализации этой идеи. На длинной сцене собрано несколько эффектов. Гигантская голограмма в 9,1 м просматривается в пустом бальном зале. Анимированные призраки движутся в скрытых черных комнатах. Самая современная версия применяется в башне Террора Сумеречной Зоны.
Аттракцион в городе Нэшвилле использует классическую технику, давая гостям увидеть духов, взаимодействующих со средой. Их видно особенно близко. В Калифорнии также есть аттракцион Хэллоуин на Лесных горах, изображающий сюжетных персонажей. Проекция изображения на пол и отражение его в стекле позволяет живому актеру взаимодействовать с призраком, что используется в спектаклях. Мир может увидеть феномен в Нидерландах, Австралии, Америке, музеях, парках, научных выставках и аттракционах. Иллюзия находит применение в разных сферах:
- Телевидение и кино используют метод для трансляции передач и создания эффектов.
- Иногда феномен применяют в коммерческих целях для привлечения посетителей.
- Его часто используют на музыкальных концертах. Но в этом случае изображения часто проецируемые, а не голографические. Целые установки работают на специальном программном обеспечении.
- Политические выступления позволяют воспроизводить фигуры сразу в нескольких местах. Такой эффект применялся в Индии при выступлении министра Нарендра Моди.
- Научная философия использует голографическую модель Вселенной, где каждая часть 3D-изображения содержит информацию обо всей картине. Это помогает подробно изучать мир.
Принципы физики
Амплитуда и фаза характеризуют объекты волн. Зарегистрировать амплитуду можно без проблем. Настоящую голографическую пирамиду может без проблем зарегистрировать обыкновенная фотопленка. Она преобразует ее в фотографическое почернение. Интерференция нужна для регистрации фазовых соотношений голографической пирамиды. Она преобразует ее в фазовые амплитудные соотношения. При помощи нескольких электромагнитных волн получается интерференция.
Частоты этих волн голографической пирамиды должны совпадать. Две волны необходимо сложить в определенной области, чтобы записать голограмму. Одна из этих областей — опорная волна. Другая — объектная волна голографической пирамиды. В этом месте нужно вставить пластинку или любой другой материал. В результате в этой области возникает картинка. Чтобы получить объектную волну, нужно просветить опорной волной эту пластинку. В результате чего мы получим такой же свет, который отражается от объекта записи.
Размеры пирамиды
Голографическая пирамида имеет такие размеры: ширина верхней части трафарета равна 10 мм, нижняя часть – 60 мм, а высота – 35 мм. Также очень важно, что пирамида должна находиться под углом 45 градусов. Далее прикрепляем трафарет на стекло. Его нужно временно приклеить на двухсторонний скотч. Дальше сделаем надрезы с помощью ножа, отломим стекло с помощью плоскогубцев. Сначала можно зажать заготовку в тисках.
В результате заготовка должна быть, как треугольник. Сколы обрабатываем наждачной бумагой. Те же самые действия проделываем еще 3 раза. В результате у нас должны быть четыре штуки заготовки.
Когда все заготовки готовы, нужно снять подложки и склеить их между собой клеевым пистолетом. Наша задача выполнена, чтобы мы смогли увидеть иллюзию, нам нужно установить ее по центру на экране смартфона. Еще нужно закрыть пирамиду куском картона. Запускаем картину и наблюдаем с любого ракурса.
Оптическая установка
Теперь вы знаете, что такое голограмма. Как сделать ее в домашних условиях без особых затрат? Многие думают, что это просто невозможно. Однако это не так. Голограмма обычно делается при помощи специальной фотоустановки. При желании ее также можно сделать самостоятельно. На главной раме необходимо зафиксировать прямоугольный каркас, изготовленный из трубок с квадратным сечением. Подобную заготовку следует установить на достаточно прочный лист фанеры. При этом конструкция должна быть устойчивой. На дополнительной трубке следует поместить объект, который нужно сфотографировать.
Основная деталь данной установки – это оптическая скамья, длина которой составляет полметра. На ней нужно установить несколько держателей для штативов. Они будут вкручиваться в линзу. Последние должны быть двояковогнутые. Фокусное расстояние линз должно составлять 3 сантиметра. Оптическую скамью стоит выкрасить матовой черной краской.
Читайте также: