Как сделать радиус три от руки
Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.
Термины при построениях окружности
Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.
Деление окружности на 4 и 8 одинаковых частей
Деление окружности на 3 и 6 равных частей (кратные 3 трём)
Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.
Деление окружности на 5 и 10 равных частей
Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки "а" в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке "b". Радиусом R3 из точки "1" проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние "b-О" даёт сторону правильного десятиугольника.
Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки "1" окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.
Нахождение центра дуги окружности
Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.
Для деления окружности на любое число равных частей часто пользуются приведённой в статье таблицей коэффициентов для длин хорд заданной окружности.
Формулы для расчёта площадей двумерных геометрических фигур. Площадь треугольника, квадрата, параллелограмма, ромба, трапеции, правильного многоугольника.
Грубейшая ошибка в обозначении центра окружности. В центре обязательно пересечение длинных штрихов, а не коротких(точек).
Грубейшая ошибка в обозначении центра окружности. В центре обязательно пересечение длинных штрихов, а не коротких(точек).
При разметке все построения производятся с помощью двух линий — прямой и окружности (на рис. 3.42 с целью повторения представлены элементы окружности).
Рис. 3.42. Окружность и ее элементы
Нахождение центра окружности. На плоских деталях, где уже имеются готовые отверстия, центр которых неизвестен, его находят геометрическим способом. На торцах цилиндрических деталей нахождение центра производят при помощи циркуля, рейсмуса, угольника-цетроискателя и колокола.
Разметка центра по угольнику-центроискателю. Разметку выполняют в следующей последовательности.
- 1. Деталь устанавливают на разметочную плиту так, чтобы размечаемый торец был сверху.
- 2. На торец цилиндрической детали накладывают угольник-центроиска- тель так, чтобы две его стороны (планки) касались цилиндрической поверхности детали, рис. 3.43.
Рис. 3.43. Нахождение центра окружности с помощью угольника-центроискателя
- 3. Левой рукой плотно прижимают линейку угольника к поверхности торца, а правой проводят чертилкой первую диаметральную риску.
- 4. Угольник-центроискатель поворачивают по цилиндрической поверхности детали примерно на 90° и проводят вторую риску. Точка пересечения двух рисок будет центром размечаемой окружности.
Разметку центра детали с грубо обработанной цилиндрической поверхностью производят в такой же последовательности. В этом случае для более точного нахождения центра окружности необходимо нанести пять-семь рисок. Центром будет точка, в которой пересекается наибольшее число рисок.
Точность разметки центра окружности проверяют разметочным циркулем, рис. 3.44. Острие одной ножки циркуля устанавливают в размеченный центр, а другую ножку перемещают так, чтобы ее острие слегка касалось цилиндрической части детали. Если острие ножки циркуля касается по всей длине окружности, то центр размечен правильно.
Рис. 3.44. Способ проверки точности разметки центра окружности разметочным циркулем
Разметка центра рейсмусом (рис. 3.45). Деталь кладут на призмы или параллельные подкладки, уложенные на разметочную плиту. Устанавливают острый конец иглы рейсмуса несколько выше или ниже центра размечаемой
Рис. 3.45. Разметка центра рейсмусом
детали и, придерживая деталь левой рукой, правой рукой движением рейсмуса по плите прочерчивают его иглой на торце детали короткую рису. После этого поворачивают деталь на 1/4 окружности и таким же способом проводят вторую риску. То же повторяют через каждую четверть оборота для проведения третьей и четвертой рисок. Внутри рисок (на пересечении диагоналей) и будет находиться центр. Его набивают кернером.
Геометрический способ нахождения центра заключается в следующем. Пусть дана плоская металлическая плита с готовым отверстием, центр которого неизвестен. Перед тем как начать разметку, вставляют в отверстие широкий деревянный брусок и на него набивают пластинку из белой жести или из оцинкованного кровельного железа.
Затем на краю отверстия слегка намечают произвольно три точки Л, В и С и из каждой пары этих точек ЛВ и ВС описывают по обе стороны их пересекающиеся между собой дуги-засечки 1—2 и 3—4, рис. 3.46. Через точки пересечения дуг проводят две прямые по направлению к центру до их пересечения в точке О. Точка пересечения этих прямых, и будет искомым центром отверстия.
Рис. 3.46. Нахождение центра геометрическим способом
Разметка центра циркулем (кронциркулем). Зажав деталь в тиски, растворяют ножки циркуля на величину, немного большую или немного меньшую радиуса размечаемой детали. После этого, приложив к боковой поверхности детали одну ножку циркуля и придерживая ее большим пальцем, другой ножкой циркуля очерчивают дугу. Далее переместив циркуль на 1/4 окружности (на глаз), таким же образом очерчиваю вторую дугу. Затем через каждую четверть окружности очерчивают третью и четвертую дуги. Затем соединить противоположные засечки диагоналями, рис. 3.47я. Центр окружности будет находиться внутри очерченных дуг на пересечении диагоналей.
Рис. 3.47. Разметка центра циркулем (кронциркулем)
Можно разметить центр и способом, показанным на рис. 3.476. Методика разметки аналогична разметке рейсмусом.
Разметка центра колоколом. Приспособление колокол устанавливается на торец цилиндрической детали. Придерживая колокол левой рукой в вертикальном положении, правой рукой наносят удар молотком по кернеру, находящемуся в колоколе, рис. 3.48. Кернер сделает углубление в центре торца.
Рис. 3.48. Разметка центра колоколом
Деление окружности на равные части. При разметке окружностей часто приходится их делить на несколько равных частей — 3, 4, 5, 6, и больше. Ниже приведены примеры деления окружности на равные части геометрическим способом и с помощью таблиц.
Деление окружности на три равные части с построением вписанного треугольника (рис. 3.49).
Рис. 3.49. Деление окружности на три части с построением вписанного треугольника
- 1. В центре размечаемой плоскости с помощью циркуля проводим окружность требуемого радиуса, например R = 26 мм.
- 2. Через центр окружности по линейке проводим прямую риску с пересечением окружности в точках А и В.
- 3. Опорную ножку циркуля устанавливаем в точку А и при растворе циркуля, равном радиусу проведенной окружности, делаем на окружности две метки-засечки (точки С и D), где длина дуги между ними будет равна одной трети длины окружности.
- 4. Соединив точки прямыми рисками СД СВ и BD, получим вписанный равносторонний треугольник.
- 5. Правильность построения проверяем циркулем, устанавливая раствор циркуля равным одной из сторон треугольника и этим же размером определяя равенство остальных сторон треугольника.
Деление окружности на четыре равные части с построением вписанного квадрата, рис. 3.50.
Рис. 3.50. Деление окружности на четыре части с построением вписанного квадрата (а) и прием разметки квадрата (6)
- 1. В центре размечаемой плоскости циркулем проводим окружность требуемого радиуса, например R= 28 мм.
- 2. Через центр окружности по линейке проводим прямую риску что бы она пересекала окружности в двух точках А и В и разделяла ее на две равные части.
- 3. Опорную ножку циркуля устанавливаем в точку А и, раздвинув циркуль на расстояние несколько большее, чем половина отрезка АВ, проводим дугу в.
- 4. Опорную ножку циркуля переносим в точку В и, не изменяя раствора циркуля, проводим дугу б так, чтобы она пересекла первую выполненную дугу в точках 7 и 2.
- 5. Через точки 7 и 2 проводим риску, которая образует на окружности точки С и D.
- 6. Соединив точки AD, DB, ВС и СА прямыми рисками, получим квадрат, вписанный в окружность.
Деление окружности на пять равных частей (рис. 3.51). На данной окружности проводим два взаимно перпендикулярных диаметра, пересекающие окружность в точках А и В, С и D. Радиус ОА делим пополам и из полученной точки Е описываем дугу радиусом ЕС до пересечения в точке F на радиусе О В. После этого соединяем прямой точки D и F. Откладывая длину прямой DF по окружности, разделим ее на пять равных частей.
Деление окружности на шесть равных частей с построением вписанного шестиугольника, рис. 3.52.
Рис. 3.51. Деление окружности на пять равных частей
Рис. 3.52. Деление окружности на шесть частей с построением вписанного шестиугольника
- 1. В центре разметочной плоскости циркулем проводим окружность требуемого радиуса, например 7? = 27 мм.
- 2. Через центр окружности по линейке проводим прямую риску с пересечением окружности в точках А и В.
- 3. Из точки А, как из центра, наносим дугу радиусом, равным радиусу проведенной окружности, и получаем точки 7 и 2
Аналогичное построение делаем из точки В, нанося точки 3 и 4. Полученные точки пересечения и концевые точки диаметра будут искомыми точками деления окружности на шесть частей.
4. Соединив точки прямыми рисками А — 1,2 — 4, 4 — В, В — 3, 3 — 1 и 1 — А, получим вписанный шестиугольник.
При разметке граней шестиугольника под размер h зева гаечного ключа (рис. 3.53) радиус описываемой окружности определяется по формуле R = 0,577/г.
Рис. 3.53. Пример разметки шестиугольника под размер зева гаечного ключа
Таблица 3.5. Деление окружности на равные части
Число делений окружности
Число, умножаемое на радиус окружности
Число делений окружности
Число, умножаемое на радиус окружности
Число делений окружности
Число, умножаемое на радиус окружности
Окончание табл. 3.5
Число делений окружности
Число, умножаемое на радиус окружности
Пример 1. Требуется разделить на 15 равных частей окружность, радиус которой равен 280 мм. Сначала определяем величину хорды, т. е. расстояние между двумя соседними делениями. Для этого из второй графы табл. 3.5 берем число, стоящее против цифры 15 первой графы (в данном случае это будет 0,4158), и умножаем на это число радиус окружности.
Это расстояние берем циркулем по масштабной линейке и откладываем его на размечаемой окружности. Последняя разделится на 15 равных частей.
Пример 2. Требуется разделить на 13 равных частей окружность, диаметр которой равен 500 мм.
По таблице число, соответствующее 13 делениям, составляет 0,4786. Следовательно
Отложим циркулем полученное расстояние размечаемой окружности, разделим ее на 13 равных частей.
Разметка отверстий на деталях. Разметка отверстий под болты и шпильки в плоских деталях, кольцах и фланцах для труб и цилиндров машин требует особого внимания. Центры отверстий болтов и шпилек должны быть точно расположены (размечены) по окружности — так, чтобы при наложении двух сопрягаемых деталей соответствующие отверстия приходились строго одно под другим.
После того как размеченная окружность (рис. 3.54) разделена на части и в надлежащих местах по этой окружности накернены центры отверстий, приступают к разметке отверстий. При кернении центров сначала накернивают углубление лишь слегка и затем проверяют циркулем равенство расстояния между центрами. Только убедившись в правильности разметки, накернивают центры окончательно.
Рис. 3.54. Разметка отверстий: 1 — размечаемое кольцо; 2 — деревянная планка, забитая в отверстие; 3 — проведение окружности; 4 — разбивка отверстий; 5 — размеченные отверстия; 6 — окружность центров отверстий; 7 — контрольная окружность; 8 — керны
Отверстия размечают двумя окружностями из одного центра. Первую окружность проводят радиусом по размеру отверстия, а вторую окружность, как контрольную — радиусом на 1,5—2,0 мм большим, чем первый. Это необходимо для того, чтобы при сверлении можно было видеть, не сместился ли центр и правильно ли идет сверление. Первую окружность накернивают — для малых отверстий делают 4 керна, для больших — 6—8 и больше.
На рис. 3.55 приведен пример разметки фланца задвижки.
Рис. 3.55. Пример разметки отверстий на фланце задвижки: а — задвижка и элементы разметки; б — разметка фланца на шесть отверстий; в — разметка под четыре отверстия; г — под восемь отверстий
Rednasty 7 марта, 2018 Я не волшебник, я только учусь. Но про стили интерьера, комфортное обустройство дома и превращение хрущевских квартир в роскошные апартаменты знаю все. Хобби: люблю давать хорошие советы.
Умение рисовать ровные круги на поверхности может стать очень полезным в хозяйстве, особенно во время ремонта или для всевозможных поделок.
Чтобы нарисовать круг ровно, совсем необязательно использовать специальные инструменты
Как быстро нарисовать ровный круг без специальных инструментов
Существует масса способов рисовать круги без специальных инструментов, этот самый простой из них. Для его реализации вам нужно подготовить:
- пару карандашей;
- рулетку или линейку;
- полоску гофрированного картона (его можно вырезать из любой упаковочной коробки).
Когда все необходимое будет под рукой, можно приступать к действиям.
Первым делом вам следует подготовить полосу гофрированного картона. Ее длина должна на несколько сантиметров превышать радиус необходимого вам круга.
С одной стороны картонной полоски (в паре сантиметров от края) проделайте отверстие под карандаш.
Вставьте по карандашу в подготовленные отверстия. У вас получится своеобразный циркуль, которым удобно начертить ровный круг.
Всего за пару минут вы сможете нарисовать идеально ровный круг с любым диаметром
Как видите, этот способ не только простой и быстрый, он также не требует от вас никаких особых инструментов. Ведь кусок картона и пара карандашей найдутся в любом доме.
Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!
Добрый день коллеги. Что бы найти радиус окружности с помощью линейки и циркуля много времени не нужно. Вспомним школьные годы. Для тех, кто запамятовал или прогуливал будет полезен этот урок.
Существуют разные подходы.
- Можно найти диаметр круга через вычисления.
- Найти цент окружности с помощью угольника.
- Решить с помощью листа ватмана (важно, чтобы был лист с 90 градусными углами).
- А можно применив циркуль и линейку.
Рассмотрим простой способ (один из…), как найти диаметр окружности с помощью линейки и циркуля.
Здесь чистая геометрия. А эта наука идет рядом с живописью, с архитектурой.
Для чего это художникам?
Работа с цветным стеклом. В церквях окна с раскрашенными кусочками стекла составляют картины. Делая такие витражи без точных вычислений не обойтись. Каждый из кусочков нужно точно вырезать и поставить в определенную ячейку. Поэтому и здесь пригодиться наш метод.
Представим, что мы расписываем стену, у нас имеется круглый трафарет, но вот центра нет. А нам жизненно необходимо его определить и точно прикладывать к определенным точкам нашей композиции на стене.
Может мы мастера по дереву. Делаем резной круглый стул или стол. В средине необходимо просверлить или нарисовать узор.
Очень тяжелая работа роспись на потолке. Формы разные. Когда начинаем с начала, то средина будет. Когда панно переделываем, то круг имеется, но центр нужно найти. С размерами необходимо будет повозиться, но это второй вопрос.
Возможно найти радиус круга, центр путем подбора, но это долго и не эффективно.
На видео ниже детально описано как найти центр.
Как найти центр окружности
Рассмотрим в картинках, как найти радиус окружности
Что такое диаметр окружности многие знают.
Линия, нарисованная через центр окружности и будет диаметр. Радиус круга — это его половина (для того, кто не помнит).
Дана окружность зеленый цвет.
На теле зеленого круга ставим случайно точку A, и вокруг нее описываем круг фиолетового цвета.
Ставим еще одну точку B. Описываем второй круг.
Проведя через пересечения фиолетовых окружностей прямую, получаем диаметр зеленого круга C D.
Диаметр круга
Эту же процедуру проводим с желтыми объектами. Только их центрами будут точки C D.
Проведя через пересечения желтых объектов прямую, получим очередной диаметр перпендикулярный первому. Их пересечение будет центром зеленого с точкой O.
Важно, чтобы фиолетовые круги были одинаковы, а по размеру чуть больше зеленого.
К желтым окружностям это тоже относится.
Этим не хитрым способом получим центр, что поможет без задержек выполнить заказ.
Человек на рисунке часто окружен архитектурными объектами. Без точных вычислений определить геометрию окружения, уходящую в перспективу, не выйдет. В такие моменты и нужны знания геометрии.
Построить среду обитания не сложно. Имея знания, подобная задача не будет трудной.
Все художники (без исключения) пользуются построением.
В уроках рисования на нашем сайте можно онлайн узнать ответы на разные вопросы.
В курсе по рисунку собраны уроки перспективы, тона, построения, композиции и разные хитрости.
Читайте также: