Как сделать радиус чпу
Проектирование деталей для ЧПУ обработки с учетом технологических возможностей
Что, если бы можно было бы изменить проектирование детали таким образом, чтобы сделать производство данной детали значительно проще, не уменьшая при этом ее полезность? Существует целая система приемов на данную тему, которые описаны ниже.
Материал
Тип материала. Тип материала детали значительно повлияет на технологичность. Пластик, алюминий и латунь очень просты в применении по сравнению, например, с титаном и сплавами из твердой стали.
Если деталь все же должна быть стальной, используйте низкоуглеродистую горячекатаную сталь вместо холоднокатаной. Она более стабильна, а холоднокатаная сталь будет деформироваться и вам потребуется обрабатывать ее не единожды.
Подберите материалы, физические свойства которых соответствуют (но не излишне) потребностям вашей детали.
Затем выберите материалы, которые соответствуют этим потребностям при минимальных затратах на материал и на механическую обработку.
Иногда приходится использовать более дорогой материал, но вы сэкономите больше времени на уменьшении затрат на механическую обработку при помощи материала, который легче обрабатывать.
Например, отдайте предпочтение 303 нержавеющей стали вместо 304, потому что она обрабатывается лучше, чем 304.
Или же вы можете использовать более жесткий алюминиевый сплав, например 7076, вместо некоторых марок стали. Не смотря на то, что алюминий стоит дороже, он обрабатывается намного быстрее, чем сталь, на большинстве станков с ЧПУ.
Твердость материала. Зачастую более твердые материалы труднее обрабатывать. Изучите различные степени твердости разных материалов и их сплавов и состояния. Примером состояния материала является, различная степень твердости.
Обычный прибор для измерения твердости (твердомер)
Форма и размеры заготовки
Форма заготовки. Подумайте, какие формы дешевле приобрести, а какие формы ближе к готовой детали и, следовательно, требуют меньшей обработки.
Размер заготовки. При определении размеров детали представьте их соотношение с размерами чернового припуска. Вам нужен припуск для механической обработки, не требующий слишком большого наращивания в черновом припуске, дабы вы не тратили время и деньги, чтобы превратить этот запаса в шлам.
Подготовки черного припуска
Самая дешевая форма удаления материала часто приходится на стадию подготовки чернового припуска (сырья). Например, если вы можете приступить к обработке на заготовке которую можно вырезать гидроабразивом, вам может понадобиться только один проход, а не большое количество черновых фрезерных проходов перед чистовым.
Не ужесточайте допуски сверх меры!
Чем жестче допуски, тем выше производственные затраты. Не устанавливайте жесткие допуски, если они действительно не требуются. Одним из самых дорогих допусков является глубина резьбы, часто она не играет никакой роли.
Глубина резания и радиус углов
Имейте в виду радиусы углов в пазах. Жесткость инструмента изменяется с третьей степенью длины и четвертой степенью диаметра. Инструмент, длина которого вдвое больше, будет иметь лишь 1/8 от жесткости короткого. Инструмента, диаметр которого вдвое больше, будет в 16 раз жестче. Поэтому не проектируйте детали с глубокими пазами и малыми радиусами закругления. Мой совет - поддерживать отношение глубины и диметра 3: 1 (2x радиуса закругления). Таким образом, углубление с радиусом закругления в 6 мм должно быть не более 38 мм, в противном случае вы значительно увеличите производственные затраты.
Вот еще один совет: установите радиус закругления чуть больше концевой фрезы, которая будет использоваться для выборки паза. Это уменьшит нагрузку на концевую фрезу благодаря уменьшению углов захвата инструмента, а также уменьшит ваши производственные затраты либо за счет более быстрой подачи концевой фрезы, либо за счет продления времени ее работы.
Сквозные и глубокие отверстия
По возможности делайте сквозные отверстия, поскольку они облегчают удаление стружки. Особенно это относится к отверстиям, которые будут рассверлены или нарезаны резьбой.
Глубокие отверстия обходятся намного дороже. Для достижения максимальной эффективности постарайтесь сохранить отношение длины к диаметру менее 4 (без отверстий более 4 диаметров). Любое отверстие глубиной более 10 диаметров, вероятно, будет проблемным.
Что касается кромок
Как правило, дешевле делать фаску на кромках, чем закруглять.
Избегайте зеркальных деталей!
Зеркальные детали обычно используются парами в сборке. Если сборку можно спроектировать так, чтобы обе части могли быть одинаковыми, можно сильно сэкономить.
Избегайте тонких стенок!
А также тонких перегородок и тому подобного. Тонкие стенки и перегородки подвержены вибрации (что замедляет скорость обработки), деформации (поэтому трудно выдерживать допуски с ними), и их легче повредить при производстве.
Избегайте подрезов и всего, что требует специальной обработки
В большинстве случаев подрезы являются серьезной проблемой для CAM программ и обработки, поэтому убедитесь, что они действительно нужны, прежде чем указывать их на детали.
Обеспечьте зазор между инструментом и заготовкой при повороте!
При плечевом соединении в 90 градусов зазор между инструментами будет меньше, чем при конусовидном плечевом соединении, следовательно, вы столкнетесь с большими проблемами. Кроме того, если вы убавляете область, чтобы достичь допуска, а перпендикулярные плечевые соединения граничат с областью, более чем вероятно, что вы столкнетесь с неровностями.
Резьба и нарезание резьбы
Существует много способов свести к минимуму расходы, связанные с резьбой и нарезанием резьбы, например:
- Минимизируйте длину резьбовой части в отверстии. Наружный диаметр в 1.5x обеспечивает достаточную прочность.
- По возможности избегайте глухих отверстий. Если вам необходимо нарезать резьбу в глухом отверстии, сделайте допущение в нижней части отверстия на наружный диаметр на 1/2 больше, чем резьба.
- Не переусердствуйте с относительной рабочей высотой профиля резьбы в процентах. 75% резьба дает 95% прочности 100% резьбы, но для нее необходимо только 1/3 крутящего момента – вероятность повредить выпускное отверстие становится гораздо меньше.
- Избегайте жестких допусков глубины резьбы, использовать их будет слишком дорого.
Радиус дна углублений меньше радиуса закругления стенки
Можно модель в САПР, в которой радиус дот дна до края стенки будет таким же, как и радиус закругления, но это обойдется дороже, так как, вероятно, потребуется, чтобы сферическая реза сделала радиус дна, что повлечет за собой дополнительный проход с дополнительным инструментом. Установите радиус дна, который под силу выполнить сферической концевой фрезе. Ее можно будет сразу использовать для полной обработки кармана.
Минимизируйте кол-во установов!
Изготовление детали должно содержать минимальное количество установок заготовки, в идеале – все делать с 1 установа. В случае токарной обработки постарайтесь задать все точные проходы таким образом, чтобы их можно было обработать за 1 заход, не переставляя и не переворачивая ее.
В особенности избегайте перезакрепления деталей при обработке поверхностей, которые должны быть концентричны.
Проектирование в случае нескольких установов
Если вам необходимо использовать несколько установов, следуйте методикам проектирования, которые уменьшают затраты.
Если деталь требует нескольких установок, проектируйте специальные крепления и сами детали таким образом, чтобы вариант неправильной вставки детали в крепление был невозможным. Это может подразумевать добавление спец. пазов или симметричных элементов в ложементах
Невозможность неправильно вставить деталь в крепление облегчит работу.
Еще лучше сделать каждую часть симметричной, чтобы независимо от того, в какую сторону она направлена в креплении, она обрабатывалась правильно.
Минимизируйте требования к инструментам!
Учтите, что у станка ограниченное количество лотков у устройства для смены инструмента.
Попробуйте спроектировать деталь так, чтобы использовать как можно меньше различных инструментов.
Например, вы можете использовать центровое сверло для зенковки плоскоголовых винтов с головкой под ключ. Возможно, вам удастся уменьшить число необходимых диаметров сверла с помощью использования концевой фрезы и фрезеровкой отверстий.
Если вы работаете с очень дорогой сложносборной конструкцией, в которой море резьбовых отверстий, подумайте о резьбофрезеровании вместо нарезания - если резьбовая фреза сломается, она не будет застрянет в отверстии.
Каждая из этих идей имеет свои плюсы и минусы, которые следует оценить, дабы определить, какой же из них действительно уменьшит стоимость производства.
Проектирование с учетом требования сборки (ПТС)
Идея состоит в том, чтобы изменить проект таким образом, чтобы упростить сборку деталей. Существует много методов, например, вот эти два:
- Не ужесточайте допуски на болтовых отверстиях.
- Используйте меньше креплений.
И еще некоторые не менее важные советы, которые помогут вам в проектировании деталей:
Задайте посадку с большим зазором для болтов! Обеспечьте как можно больший зазор в отверстиях, которые фиксируют болты. Это обеспечит более широкий интервал ошибки, если что-то пойдет не так. Этого можно достигнуть, используя отверстия большего размера, или же используя пазы вместо отверстий. Помните: вы не можете перемещать резьбовые отверстия! Если что-то пойдет не так, лучшим вариантом будет больший зазор в отверстиях без резьбы.
Избегайте незамкнутых отверстий! Неполные отверстия – отверстия на краю, т.е. в которых ось сверла на расстоянии от кромки менее своего радиуса. При сверлении кромка сверла в какой-то момент не касается материала. Их сложно точно обработать, так как кончик блуждает.
Используйте сверление перпендикулярно поверхности! При сверлении изогнутой поверхности кончик может изгибаться. Чтобы избежать этого, вам потребуется перед сверлением фрезеровать мелкое углубление. Это удорожает сверление отверстия.
Избегайте глубоких и близко расположенных пазов! Придерживайтесь конечной глубины паза менее 15-и диаметров концевой фрезы для мягких материалов (дерево или пластик), 10x для алюминия и 5x для стали. Более длинные инструменты подвергаются сильной деформации и вибрации, что приводит к плохой обработке поверхности, меньшему сроку службы и низким допускам.
Избегайте длинных тонких деталей при токарной обработке! Вам может понадобиться упорная бабка, или люнет.
Располагайте наружные края прямо и параллельно. При прямых параллельных краях будет проще закрепить заготовку.
Располагайте внутренние края прямо. Если стенки углубления не вертикальны, их обработка обойдется дороже.
Внутренние скругления и фаски. Внутренние фаски забирают много времени, так как их сложно выполнить. Внутренние скругления легче сделать, так как при этом можно использовать круглые концевые фрезы.
Обозначение допусков и посадок. Во многих случаях использование системы допусков и посадок работает лучше по сравнению с допусками +/-.
Используйте плавное врезание в деталь! Многие CAM-программы предлагают широкий выбор методов врезания: погружение, наклонный вход, вход по спирали вниз и т. д. Некоторые из этих методов намного мягче остальных. Ознакомьтесь с наилучшими методами и используйте их вместо более жестких.
Используйте утолщение вместо плоских поверхностей. Если требуется точный монтаж, подумайте на счет использования утолщений в местах штифтов или крепежных деталей, вместо просто плоской поверхности. Дешевле сделать утолщения плоскими.
Не используйте глухие отверстия с плоским дном! Глухие отверстия должны быть разрезаны сверлильным инструментом с коническим дном. Чтобы сделать плоское дно, может потребоваться дополнительная обработка.
Проектируйте карманы с как можно большим внутренним радиусом. Чем меньше внутренний радиус, тем меньшая нужна будет фреза, необходимая для работы. Это удорожит обработку. Так, в идеале радиус должен быть немного больше, чем стандартный размер концевой фрезы – так резание угла паза будет чуть легче.
Вопрос по скруглению краев прорезных деталей
Вопрос по скруглению краев прорезных деталей
Добрый день господа. Уже задавал этот вопрос 10 дней назад, никто не ответил. Возможно конечно мой вопрос бессмысленный и решается очень примитивно, но гугль по этой теме ничего мне не рассказал, может кто-то здесь подскажет, как решить эту проблему, для меня это очень важно.
Суть вопроса:
Необходимо изготовить прорезные изделия из фанеры с плавным скруглением краев.
Как на этом рисунке например
, задав нужное смещение от краев траектории. Но этот способ не всегда приемлим в случае сложной траектории с резкими изменениями направления, и при малых расстояниях между векторами контура.
Поэтому появилась идея скруглять края обычной сферической фрезой (как при 3D обработке) диаметром 1-2мм.
Вопрос в составлении УП.
Можно конечно в арткаме сделать несколько УП как бы для разных диаметров фрезы с соответствующей коррекцией заглубления по Z. Но это очень непрактично и трудоемко. Если нужно сделать 10 проходов, то нужно 10 УП.
Может есть какие то более красивые решения, кто сталкивался с похожей задачей?
Я попытался сам написать программу для расчета траектории движении фрезы. Берет на вход файл с координатами контура и строит много много эквидистант, корректирую высоту по Z.
Программу написал. Но до конца реализовать алгоритм построения эквидистанты не получилось, задача не такая простая как кажется на первый взгляд. Пока моя программа работает только с несложными траекториями. Я знаю как доработать алгоритм, работающий для любой траектории, но это потребует значительных временных затрат. Нет желания напрасно тратить время, если задача возможно решается намного проще.
Строишь 3d модель, вставляешь в арткам в то же место, где и вектор контура детали, и рассчитываешь траекторию обработки смещением, ограничив область обработки контуром детали.
Проще всего фрезой со сферическим концом.
Плоскую часть можно не обрабатывать, так же ограничив ее вектором, сместив внутрь контур.
Можно и плоской циллиндрической фрезой, траекторией растром в двух направлениях.
Это будет оооочень долго. Проще взять такую же фрезу, но с подшипником и после станка обкатать на ручном фрезере (если фрезер в столе так вообще быстро будет).
Продолжаем публикацию материалов из Справочника фрезеровщика под редакцией В.Ф. Безъязычного. На этот раз разберем cтанки с числовым программным управлением.
Станки с числовым программным управлением отличаются от обычных тем, что контролируются не оператором в процессе работы, а управляющей программой, составленной до начала работы. От того, насколько грамотно составлена программа, во многом зависит качество обрабатываемых деталей. Качество же отработки самой программы определяется, с одной стороны, характеристиками механической части станка (точностью, жесткостью и другими), с другой – совершенством стойки ЧПУ (дискретность, математическое обеспечение и прочее).
Наибольшее распространение получили три системы числового программного управления: Heidenhain, Sinumerik и Fanuc (рис. 3.26). Все они поддерживают стандартный код ISO, однако имеют наборы специфических команд. Например, пакет пятиосевой трансформации, решая одни и те же задачи, реализован по-разному в каждой системе.
Рис. 3.26. Стойки ЧПУ основных производителей
Управляющая программа представляет собой последовательность кадров (строчек), в которых задана траектория перемещения инструмента и технологические команды – включение и выключение вращения шпинделя, подача СТОС, смена инструмента и др. Каждый кадр состоит из слов, сочетания адреса (X, Y, T, S…) и числа, записываемого в этот адрес памяти стойки (см. табл. 3.13)
3.13. Шаблон типового кадра управляющей программы
Так, для перемещения в позицию 100 по координате Х следует задать адрес позиционирования X100 и тип перемещения, например линейное, на рабочей подаче – технологическую команду G1. В современных стойках ЧПУ номер кадра не является обязательным блоком и служит для удобства наладчика и программиста
Основные адреса позиционирования приведены в таблице 3.14, основные G-коды и М-коды – в таблицах 3.15 и 3.16.
3.14. Основные адреса позиционирования
3.15. Основные G-коды (подготовительные функции)
3.16. Основные M-коды (функции управления станком)
Различают модальные и немодальные (одноблочные) команды. Немодальные действуют только на тот кадр, где встречаются. Модальные работают как тумблер, будучи включены, распространяют свое действие на все последующие кадры. То есть немодальные команды необходимо указывать в каждом кадре, а модальные достаточно в одном. Например:
В кадре N10 происходит перемещение в абсолютных координатах G90 в точку X = 100; Y = 200 на холостом ходу G0 с торможением в конце кадра G9. G90 и G0 модальные, поэтому в следующем кадре происходит перемещение, также на холостом ходу в точку с абсолютными координатами X100; Y200; Z50. G9 не модальная команда, ее приходится повторять.
В кадре N20 отменяем действие G90, указав G91 – происходит относительное перемещение по координате X на 100 мм (в точку с абсолютными координатами X200; Y200; Z50), причем на рабочем ходу G1 с подачей F 350 мм/мин. G91 и G1 модальные, поэтому в следующем кадре N25 произойдет перемещение на рабочем ходу на 200 мм по оси Y (в точку с абсолютными координатами X200; Y400; Z50).
При разработке программы используют линейную или круговую интерполяцию. Стойка ЧПУ рассчитывает траекторию движения инструмента (положение в каждый момент времени при отработке кадра) из текущей позиции в запрограммированную конечную по прямой в случае линейной интерполяции и по дуге окружности в случае круговой. Строго говоря, движение по дуге станок отрабатывает тоже прямыми отрезками, но они достаточно малы, чтобы аппроксимировать дугу с требуемой точностью.
Кадр круговой интерполяции, в отличие от линейной, должен содержать не только координаты конечной точки X, Y, Z но и адреса I, J, K, задающие центр дуги окружности, по которой происходит перемещение. Например:
Используя круговую интерполяцию, следует предварительно указать, в какой координатной плоскости происходит расчет командами G17, G18 или G19 (рис. 3.27). Так, при движении в плоскости XY (G17) адрес I соответствует расстоянию по координате X; J соответствует Y.
Рис. 3.27. Координатные плоскости
Следует помнить о двух основных способах определения I, J, K:
Рис. 3.28. Абсолютное положение координат центра окружности
Рис. 3.29. Относительное положение координат центра окружности
Причем относительное смещение может измеряться от центра дуги до конечной точки предыдущего кадра или от конечной точки до центра, то есть отличаться знаком. Имея центр дуги, придти в ее конечную точку можно как по часовой стрелке, так и против. Профиль на детали будет обработан разный. Поэтому нельзя забывать указывать направление движения при круговой интерполяции – по часовой стрелке G02 или против G03 (рис. 3.30).
Рис. 3.30. Направление круговой интерполяции
Любая управляющая программа разработана в определенной системе координат, привязанной к настроечным базам обрабатываемой детали, которую можно назвать системой координат заготовки. Станок имеет свою, машинную или ссылочную, систему координат. Чтобы связать эти две системы, используется таблица смещений начала системы координат заготовки в координатах машинной системы.
Выбор требуемой системы координат заготовки осуществляется командами G54…G59. Разумеется, предварительно необходимо занести фактические значения в таблицу смещений – машинные координаты настроечных баз, установленных на столе станка деталей.
Традиционно настроечные базы определяют с помощью индикатора часового типа. Более современный метод использования контактных щупов (головки Renishaw) (рис. 3.31).
Рис. 3.31. Определение настроечных баз
Управляющая программа обычно рассчитана с учетом заданной геометрии инструмента. Если возникает необходимость использовать инструмент, отличающийся от расчетного, следует ввести коррекцию. Коррекция на радиус инструмента задается командами G41 и G42 в зависимости от положения инструмента относительно детали (припуска) слева и справа соответственно (рис. 3.32).
Рис. 3.32. Компенсация радиуса режущего инструмента (радиус-коррекция)
Следует указать координатную плоскость, в которой осуществляется компенсация, для фрезерных станков это G17 (XY). Отмена радиус-коррекции – G40. Для определения фактического вылета инструмента используются специальные датчики.
Рассмотренная компенсация на инструмент работает в плоскости и подходит только для двух- и трехосевой обработки. Современные системы ЧПУ позволяют осуществлять компенсацию на инструмент и для многокоординатной обработки. При этом используются уже совсем другие функции, управляющая программа становится более сложной и воспринимать ее так же легко, как в обычном формате удается не сразу.
Многокоординатная обработка отличается от двух- и трехосевой наличием не только линейных перемещений, но и вращения исполнительных органов – поворотных столов, планшайб и шпиндельных бабок. Традиционно программируется непосредственно поворот исполнительного органа в градусах, например для осей поворота А и С:
Рис. 3.33. Стандартные обозначения осей поворота
Рис. 3.34. Смещение при повороте
Рис. 3.35. Вектор оси инструмента
Проще запомнить следующее правило. Если против часовой стрелки вращается:
Программирование непосредственно в координатах поворота исполнительных органов имеет существенный недостаток. Поскольку при вращении стола с деталью или шпиндельной бабки есть определенное плечо поворота, изменяется не только угловое положение детали или инструмента, но и линейное (рис. 3.34). Возникшее смещение необходимо учесть. Эту задачу может решить постпроцессор, пересчитав и внеся в текст программы соответствующее положение. Но у каждого станка плечо поворота индивидуально и на каждый станок приходится разрабатывать свой постпроцессор.
Современный подход – это машинонезависимое программирование, когда рассчитывают только взаимное расположение инструмента и детали, а все нюансы, связанные с кинематикой станка, решает сам станок. Для этого используются функции так называемой пятиосевой трансформации. Основное преимущество такого подхода – абсолютная независимость управляющей программы от кинематики станков. Единственное ограничение состоит в том, что стойки ЧПУ должны быть одного производителя. Кроме того, программа уже не привязана к конкретному расположению детали на столе станка (точнее, к расстоянию от настроечных баз детали до осей поворота).
Пакет пятиосевой трансформации у каждого производителя выполнен по-разному, однако концепция использована одна. Кадры управляющей программы дополняют блоками, описывающими пространственную ориентацию оси инструмента в системе координат заготовки, а именно, проекциями вектора оси на координатные оси. Программу сопровождают командами, включающими и выключающими трансформацию. Для стойки Heidenhain управляющая программа имеет следующий вид:
Компенсация геометрии инструмента в случае пятиосевой трансформации требует включения информации о векторе нормали к обрабатываемой поверхности в точке контакта инструмента с деталью (рис. 3.35). Heidenhain использует следующий формат:
Siemens рассматривает две точки контакта, в начале кадра (A4, B4, C4) и в конце (A5, B5, C5):
Чтобы правильно рассчитать компенсацию, системе ЧПУ необходимо предварительно указать необходимую информацию о геометрии инструмента, для которого была рассчитана программа. Тогда можно без потери точности применить переточенный инструмент с измененной геометрией.
Системы числового программного управления непрерывно развиваются, следуя возрастающим требованиям современной индустрии. Совершенствуется как аппаратная, так и программная часть. Рост быстродействия системы (как генератора импульсов, так и обратной связи) позволяет повысить точность позиционирования и скорость перемещения исполнительных узлов станка.
Увеличение скорости обработки влечет динамические перегрузки станка, которые приходится сглаживать, регулируя процесс разгона-торможения. Эта задача решается программным обеспечением, которое развивается и в других направлениях, совершенствуя сервисные функции, удобство работы со стойкой.
Управляющая программа создана, инструмент выбран и установлен в револьверную головку. Однако система координат станка пока не понимает, в каких точках пространства находятся режущие кромки фрезы или резца. Чтобы программа отработала корректно, нужно выполнить следующий этап наладки — привязку инструмента. Последняя заключается в определении вылетов фрезы, сверла или резца по осям и занесении полученных значений в УП.
При выполнении операции необходимо учитывать следующие нюансы:
- какую поверхность будет обрабатывать инструмент — внутреннюю или наружную;
- направление вращения шпинделя;
- радиус режущей кромки.
Привязка инструмента на станках с ЧПУ выполняется со стойки, поэтому наладчик должен хорошо знать систему и команды, которые используются для установки каждого вида корректоров.
Зачем выполнять привязку?
Для понимания важности операции предлагаем рассмотреть один из наиболее простых частных случаев — установку корректора на длину сверла.
В токарном станке ось вращения заготовки (шпинделя) совпадает с осью любого инструмента, который зажимают в патрон задней бабки, и значение имеет только его длина. В результате неправильной или неточной привязки инструмента к ЧПУ глубина отверстия окажется больше или меньше, чем нужно.
Ошибки в установке корректоров приводят к тому, что инструмент врезается в шпиндель, стол, заготовку на рабочем или холостом ходу. В лучшем случае вы потеряете фрезу, а в худшем — станок придется остановить на длительный и дорогой ремонт.
Когда привязка необходима?
На любом станке ЧПУ привязку инструмента делают перед тем, как выставить ноль детали. Вылеты инструментов определяют в следующих случаях:
- Если у вас многошпиндельный станок или установлена револьверная головка, нужно сделать привязку для каждого инструмента перед началом обработки. Система станка запомнит все значения.
- Если у вас простой станок с одним шпинделем, привязываться нужно каждый раз после смены фрезы или резца.
- После переточки инструмента. Чтобы задать уменьшение длины сверла или изменение размера напайки резца, можно воспользоваться корректорами износа, которые есть в большинстве систем. Однако, если вы только начинаете осваивать станок, лучше определять вылет инструмента каждый раз после переточки, чтобы не ошибиться.
После замены твердосплавной пластины на резцах привязка к ЧПУ станка чаще всего не требуется. Достаточно сделать контрольный замер обработанной им поверхности.
Способы привязки
Способ привязки инструмента к детали и станку выбирают в зависимости от вида обработки и требований к точности. Принципы определения координат режущих кромок одинаковы для всех станков, но таблицы корректоров, команды и клавиатура на стойках могут различаться. Поэтому мы остановимся только на перемещениях инструмента и измерении.
Привязка инструмента на токарно-фрезерных станках, как и другие операции по отладке управляющих программ, выполняется в режиме ручного ввода данных (MDI). Наладчик должен точно знать, какой именно код он прописывает, поскольку его исполнение происходит сразу же после ввода.
Торцевание
Такой способ привязки к ЧПУ не подойдет, если торцевая поверхность детали должна остаться нетронутой.
Точение по наружному диаметру и расточка
Для определения координаты по оси X резец подводят к боковой поверхности детали и протачивают ее с минимальным съемом материала до получения чистой поверхности. Необходимо обработать участок, достаточный для измерения диаметра. Именно этот размер нужно внести в таблицу, чтобы система рассчитала и запомнила координату. В этом случае резец отводят от детали по оси Z.
Слабое место такого способа — точность измерительного инструмента. Для определения наружного диаметра можно использовать микрометр. Его погрешность составляет 0,01 мм. Для определения диаметров отверстий лучше использовать нутромер. Он имеет такую же погрешность измерений. Но если нутромер не войдет по размеру (слишком маленькое отверстие), придется брать штангенциркуль. Даже если это электронный инструмент, добиться точности будет сложнее.
Обкатка индикатором
Этот способ привязки инструмента на токарно-фрезерном ЧПУ с револьверной головкой напоминает центровку электродвигателя. К нему прибегают, когда необходимо совместить ось вращения шпинделя со сверлом или центровкой. Для работы понадобится механический индикатор часового типа и штатив с магнитным основанием. В патрон на револьверной головке устанавливают калиброванный цилиндрический пруток или сам инструмент, если гладкая часть его хвостовика выступает из зажимных кулачков.
На шпинделе закрепляют штатив с индикатором так, чтобы измерительный наконечник опирался на цилиндрическую поверхность хвостовика. Шпиндель проворачивают вручную и смотрят на показания индикатора. Передвижением револьверной головки по X и Y добиваются такого положения, в котором стрелка будет оставаться неподвижной в любом положении шпинделя, и его принимают за ноль.
Щупы или концевые меры
Если поверхность заготовки нельзя обрабатывать, для определения координат по Z и X можно использовать мерные плитки или щупы с известными размерами. Резец подводят к детали с зазором: так, чтобы концевая мера не проходила. На минимальной подаче отводят резец, пока она не войдет. Толщину плитки нужно добавить в корректоры.
Обратите внимание, что при определении координаты резца по оси X толщину мерной плитки умножают на два и прибавляют к диаметру.
Бумага
Этот способ подойдет, когда к обработке не предъявляют высоких требований по точности: раскрой листовых материалов, обработка фасадов. Вместо концевой меры используют бумагу, а фрезу приближают к заготовке до тех пор, пока лист не зажмет между ними.
Электронные датчики
Многие станки комплектуются электронными датчиками привязки инструмента, которые также называют tool setter. Работать с ними удобно и быстро, определение координат выполняется в автоматическом режиме, что исключает вероятность ошибки. Tool setter вызывается командой со стойки. Инструмент подводится вручную на расстояние около 3 мм от датчика, после чего подается команда на определение координаты. В автоматическом режиме резец касается поверхности, а система станка сама делает расчет и вносит корректор в таблицу инструментов.
Также существуют датчики и комплектные измерительные системы, которые можно приобрести отдельно. Один из наиболее известных производителей такого оборудования — Renishaw. Компания изготавливает контактные датчики для привязки инструмента, деталей, проведения высокоточных технических измерений.
Определение координат инструмента на станках Multicut
Компания Multicut — один из ведущих российских производителей фрезерно-гравировальных станков с ЧПУ. Мы предлагаем высоконадежное оборудование для обработки различных материалов, в том числе дерева, пластиков и композитов. В нашем ассортименте представлены одно-, двух- и трехшпиндельные серии агрегатов, а также станки с ЧПУ с автоматической сменой режущего инструмента.
Наше оборудование совместимо со стандартными фрезами и граверами. Их преимущество состоит в том, что данные для привязки уже определены производителем. Их можно копировать из технической документации (паспортов) и вносить в таблицу станка. Если вы собираетесь использовать другой режущий инструмент, мы подберем и включим в комплект поставки подходящие электронные датчики.
Чтобы посмотреть видео о нашем оборудовании, подпишитесь на YouTube канал компании Multicut.
Для получения технической помощи и консультаций свяжитесь с сервисной службой в Москве или Новосибирске по контактным телефонам.
Статья освещает исключительно правильный, на наш взгляд, подход к производству станков — её обязательно стоит прочитать накануне приобретения фрезерно-гравировального оборудования.
Диагностика станков с ЧПУ представляет собой комплекс мероприятий, направленных на выявление причин отказов и сбоев. Конечная цель диагностики – поиск оптимального пути устранения проблем, составление технологической карты ремонта, коррекция управляющих программ.
Композиционные материалы на основе древесины применяются в строительстве, производстве мебели, изготовлении рекламных конструкций, предметов интерьерного дизайна. Наиболее популярный способ обработки ДСП, фанеры и МДФ – фрезеровка.
Надежное закрепление заготовки — гарантия точности и качества гравировальной или фрезерной обработки. Многие производители в этих целях комплектуют фрезерные станки вакуумными столами. Чаще всего это приспособление предлагают в качестве дополнительной опции, и стоимость его достаточно высока.
Опыт предприятий, которые полностью модернизировали свои механические участки, отказавшись от ручного управления в пользу программного, говорит о том, что использование станков с ЧПУ дает реальные преимущества. В данной статье мы не будем приводить точных экономических расчетов, но приведем не менее весомые аргументы, почему вкладывать деньги в покупку современного высокопроизводительного оборудования — во всех отношениях правильный выбор.
Читайте также: