Как сделать проецирование призмы
- Укажите способы построения аксонометрических проекций и их особенности. Как строят аксонометрические проекции плоских фигур?
- Вы узнаете : как построить прямоугольные изометрические проекции геометрических тел, как найти точки на их поверхностях.
- Вы научитесь: выполнять прямоугольные изометрические проекции геометрических тел, находить точки на их поверхностях.
Сайт: | Профильное обучение |
Курс: | Черчение. 10 класс |
Книга: | § 19. Аксонометрические проекции геометрических тел. Нахождение точек, лежащих на поверхности геометрических тел |
Напечатано:: | Гость |
Дата: | Понедельник, 31 Январь 2022, 20:00 |
Оглавление
Вступление
Геометрические тела правильной формы (многогранники и поверхности вращения) часто встречаются в конструкции деталей машин и механизмов. Правильные геометрические тела характеризуются наличием в них различных осей и плоскостей симметрии, что позволяет строить аксонометрические изображения этих тел по принципу симметрии.
Построение аксонометрических проекций геометрических тел начинают с построения горизонтальной проекции его нижнего основания, к которому достраиваются другие его элементы (грани, ребра, верхнее основание).
Аксонометрические проекции многогранников
Прямоугольная изометрическая проекция призмы. Основание призмы — правильный многоугольник (например, шестиугольник). Высота призмы совпадает с осью z, а основание расположено в плоскости осей x и y. Размеры призмы определяются их высотой и размерами фигуры основания.
1. Проводят оси изометрической проекции. Затем строят нижнее основание призмы.
2 . Из каждой вершины проводят перпендикуляры, на которых откладывают отрезки, равные высоте призмы.
3. Через полученные точки проводят прямые, параллельные ребрам основания. Определяют видимость ребер.
Определение расположения точки А:
1. От центра основания по оси х проводят прямую хА = n. Из точки n проводят прямую, параллельную оси у, до пересечения с основанием призмы.
2. Из полученной точки параллельно оси z проводят прямую
zА = h.
Определите последовательность построения проекции точки, расположенной на ребре призмы.
Прямоугольная изометрическая проекция пирамиды (например, четырехгранной). Основание пирамиды — ромб. Высота пирамиды (OS) совпадает с осью z, а основание расположено в плоскости осей x и y.
1. Проводят оси изометрической проекции. Размеры пирамиды определяются размерами ее основания и высотой. Затем строят нижнее основание пирамиды, параллельное горизонтальной плоскости.
2. Из центра основания О восстанавливают перпендикуляр, на котором откладывают высоту пирамиды.
3. Соединяют полученную точку S с вершинами основания. Определяют видимость ребер.
Определение расположения точки А
1. От центра основания О по оси х откладывают расстояние хА = m.
2. На оси у откладывают расстояние уА = n.
3. Параллельно оси z проводят отрезок zA = h.
Аксонометрические проекции поверхностей вращения
Окружности, лежащие в основаниях цилиндра и конуса, расположены параллельно горизонтальной плоскости проекций. Построение проекций цилиндра и конуса начинают с проведения осей симметрий и построения нижнего основания. Нижнее основание аксонометрических проекций цилиндра и конуса — эллипс.
Прямоугольная изометрическая проекция цилиндра. Основание цилиндра — эллипс. Высота цилиндра совпадает с осью z, а основание расположено в плоскости осей x и y. Размеры определяются высотой и диаметром основания.
1. Проводят оси изометрической проекции. Затем строят нижнее основание цилиндра.
2. Из центра основания восстанавливают перпендикуляр и откладывают высоту цилиндра. Строят верхнее основание (эллипс).
3. Проводят боковые образующие цилиндрической поверхности, определяют видимость нижнего основания.
Определение расположения точки А
1. От центра основания по оси х проводят прямую хА= m. Из точки m проводят прямую, параллельную оси у до пересечения с основанием.
2. Из полученной точки параллельно оси z проводят прямую zА= h
Составьте алгоритм нахождения точки на поверхности цилиндра, учитывая тот факт, что точка расположена на нижнем основании цилиндра.
Прямоугольная изометрическая проекция конуса. Основание конуса — эллипс. Построение проекции конуса схоже с построением проекции цилиндра. Определение расположения точек на поверхности конуса подобно построениям точек на пирамиде.
Используя ранее изученный материал, укажите способ нахождения положения точек В и С, изображенный на рисунке.
Проверим знания
1. Что такое показатель (коэффициент) искажения? Какие виды аксонометрии вы знаете? Как располагаются оси прямоугольной изометрии?
2. В какой последовательности выполняют аксонометрическую проекцию геометрического тела?
3. Приведите примеры использования аксонометрических проекций в различных сферах профессиональной деятельности.
4. Мысленно удалите элемент 1, заменив его на элемент 2. Выполните изометрическую проекцию получившейся детали.
Вопросы и задания повышенной сложности
1. Назовите общие для фронтальной диметрической и изометрической проекций этапы построения цилиндра.
2. Постройте в изометрической проекции правильные треугольную и шестиугольную призмы. Основания призмы расположены горизонтально, длина сторон основания 30 мм, высота 60 мм.
Практическая работа № 10. Аксонометрические проекции геометрических тел
В рабочей тетради выполните по чертежу изометрическую проекцию детали в масштабе 2,5:1. На аксонометрической проекции определите расположение точек А, Б и В.
Практическая работа №10.1. Чертеж аксонометрической проекции.
На формате А4 выполнить чертеж детали и аксонометрическую проекцию детали. На аксонометрической проекции покажите точки А, Б, В, Г.
Практическая работа №10.2. Аксонометрическая проекция по чертежу.
Руководствуясь двумя видами на формате А4, выполните чертеж детали в трех проекциях, закончите построение аксонометрической проекции.
По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты . Возможно очное и дистанционное обучение по Skype: 1000 р./ак.ч.
6.1. Пирамида. Сечение пирамиды плоскостью. Развертка пирамиды
Многогранником называется тело, ограниченное плоскими многоугольниками, которые называется гранями.
Грани, пересекаясь, образуют ребра .
Ребра, пересекаясь, образуют вершины .
Рассмотрим два основных вида многогранников:
Пирамида – многогранник, у которого боковыми гранями являются треугольники, а основанием – многоугольник.
Упражнение
Дана пирамида, основание которой параллельно π1. Основание представляет собой некоторый треугольник.
S – вершина пирамиды (Рисунок 6.1).
Рисунок 6.1 – Пересечение поверхности пирамиды прямой
Требуется построить точки пересечения прямой m общего положения с поверхностью пирамиды.
- Вводим через прямую вспомогательную секущую плоскость σ∈m и σ⊥π2.
- Строим сечение ∆ (123) поверхности пирамиды с плоскостью σ.
Решение задачи сводится к нахождению линии пересечения плоскостей общего положения (боковые грани пирамиды) и плоскости частного положения (плоскость σ).
Примечание. При наличии круто падающих рёбер (близких к вертикали), построение недостающей проекции точки на ребре по одной данной проекции необходимо выполнять при помощи пропорционального деления отрезка.
- В сечении находим точки M и N принадлежащие прямой m.
- Определяем видимость прямой m.
Развёрткой многогранника называется фигура, полученная в результате последовательного совмещения граней многогранника с плоскостью.
Развёртка всегда строится наружной (лицевой) стороной к наблюдателю.
Для построения развёртки пирамиды нужно определить истинные величины всех рёбер пирамиды и построить грани пирамиды в виде треугольников, последовательно присоединяя их друг к другу.
Основание можно присоединить к любой грани, например, АС (Рисунок 6.2).
Рисунок 6.2 – Построение развёртки пирамиды
В упражнении истинные значения ребер определены способом вращения. Для построения линии сечения на развертке, на истинных величинах рёбер построим точки \overline,\overline,\overline , проведя горизонтальные линии (траектории перемещения точек 1, 2, 3) до пересечения с соответствующими истинными проекциями ребер.
6.2. Призма. Развертка призмы
Призма – многогранник, у которого боковыми гранями являются параллелограммы, а основания – многоугольники, лежащие в параллельных плоскостях.
Упражнение
Дана призма, основания которой параллельны плоскости проекций π1.
Требуется построить точки пересечения прямой m с поверхностью призмы (Рисунок 6.3).
- Вводим через прямую вспомогательную секущую плоскость σ∈m и σ⊥π2.
- Строим сечение поверхности призмы с плоскостью σ →(∆(123)).
- В сечении находим точки K и L принадлежащие прямой m.
- Определяем видимость прямой m. Если грань АВ на π2 видна, то точка К на π2 видима, грань ВС невидима, следовательно, точка Lневидима.
Рассмотрим наклонную призму. Пусть основание призмы параллельно π1, а ребра параллельны π2.
Построим нормальное сечение, то есть сечение плоскостью σ, перпендикулярной ребрам призмы (Рисунок 6.4).
Это сечение развернется в прямую линию. Боковые ребра перпендикулярны к линии сечения.
Рисунок 6.4 – Построение развёртки призмы
Порядок построения :
- Найдем истинную величину сечения – (102030), для чего повернём сечение (123) вокруг оси n⊥π2, (можно ввести ДПП π3//σ).
- Проведём горизонтальную линию на свободном месте листа. Отложим на ней отрезки:
/10-20/; /20-30/; /30-10/.
- Проведём направления рёбер перпендикулярно этой линии через точки: 10; 20; 30 и отмерим вверх и вниз расстояния от нормального сечения (на π2) до верхнего и нижнего основания, откладывая их на линиях-ребрах.
6.3. Взаимное пересечение многогранников
В результате пересечения многогранников получим ломаную линию.
Возможны два случая пересечения многогранников (Рисунок 6.5):
Рисунок 6.5 – Варианты пересечения многогранников
Вершины ломаной – точки пересечения рёбер одного многогранника с гранями другого.
Звенья ломаной – линии пересечения граней.
Для решения задачи нужно найти вершины ломаной, то есть точки пересечения всех рёбер, участвующих в пересечении.
Построенные точки соединить.
Упражнение
Построить линии пересечения призмы с пирамидой (Рисунок 6.6).
Рисунок 6.6. Построение линии пересечения призмы с пирамидой
Решение
- Находим на π2 проекции точек пересечения ребра пирамиды с проецирующими гранями призмы (точки 12 и 22). Находим их горизонтальные проекции.
- Строим точки пересечения ребра призмы с боковыми гранями пирамиды (точки 32 и 42), для чего используем вспомогательную плоскость τ⊥π2.
- Полученные на π1 точки 3, 2, 4, 1 соединяем отрезками прямых. Причем отрезки 11-31, 11-21, 11-41 невидимы. Получили замкнутую линию пересечения пирамиды с призмой.
Упражнение
остроить три проекции пирамиды с вырезом и развертку (Рисунок 6.7).
- По двум проекциям построить третью;
- На всех трех проекциях построить проекции линии пересечения призматического выреза с пирамидой;
- Невидимые участки линии пересечения и участки рёбер многогранников показывать штриховой линией;
- Построить развёртку пирамиды с нанесением линии пересечения.
Рисунок 6.7. Построение проекций пирамиды с вырезом и развертки
Решение :
- Проводим линии рёбер призмы на всех проекциях.
- Введём плоскость σ⊥π2, σ//π1:
- σ//АВС – основанию пирамиды;
- σ пересекает пирамиду сечение подобно ΔА1В1С1.
Это сечение пересекается:
— с ребром D в двух точках 1 и 4;
— с ребром Е в двух точках 2 и 5.
Соединим найденные точки: 1-2-3-1; 4-6-5-7-4 и определим видимость.
Построение развертки рассмотрено ранее.
6.4. Задачи для самостоятельной работы
1-4. Построить линию пересечения гранных поверхностей. Показать видимость (Рисунки 6.8 – 6.11).
Рисунок 6.8
Рисунок 6.9
Рисунок 6.10
Рисунок 6.11
По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты . Возможно очное и дистанционное обучение по Skype: 1000 р./ак.ч.
Аксонометрические построения Автор презентации: учитель Изо и черчения ГБОУ школы №93 Столяренко Юлиана Федоровна.
Вопросы для повторения Фамилия имя____________________ класс___________________________________ 1. Какие виды аксонометрических проекций вы знаете? 2. Чем они отличаются? 3. Под какими углами располагаются оси в диметрии? 4. Под какими углами располагаются оси в изометрии? 5. Какая ось всегда вертикальна? 6. Как с помощью клеточек отложить угол в 30 градусов?
Задача: Построить фронтальную диметрическую проекцию правильной шестиугольной призмы С чего начнем построение? 2. Размеры: основание призмы вписано в окружность радиусом R 20, высота призмы 45 мм (достаточно ли этих размеров для построения?)
Построение Вычерчиваем основание призмы – правильный шестигранник вписанный в окружность R 20
Построение Чертим окружность R 20
Построение Проводим оси через центр окружности
Построение Начиная с точки пересечения оси и окружности радиусом R 20 ставим засечки по окружности
Построение Из точки пересечения оси и окружности тем же радиусом ставим засечки на окружности
Построение Соединяем точки разметки на окружности
Построение Соединяем точки разметки на окружности получаем правильный шестигранник вписанный в окружность радиусом R20
Построение Нумеруем вершины правильного шестигранника
Построение Сверху построим оси для фронтальной диметрической проекции
Построение Вверху листа построим оси для фронтальной диметрической проекции (ось У под углом 45 градусов)
Построение Продлить ось У под углом 45о градусов в другую сторону от (.)0
Построение Отметить ось У и ось Х точку 0 на чертеже основания
Построение Взять раствор циркуля равный радиусу по оси ОХ от 0 до точки 3
Построим основание в диметрии Отметить раствором R20 засечки по оси ОХ от (.)0 до точки 3 и в противоположную сторону до точки 7 (или линейкой отложив размер в натуральную величину)
Построение Линейкой измерить расстояние по оси ОУ от 0 до точки 5 (вычислить размер для диметрии поделив натуральную величину на 2)
Построение Отложить полученный размер по оси ОУ от 0 до точки 4 и в противоположную сторону до точки 1 поставить нумерацию точек
Построение Провести линии параллельные оси ОХ через точку 4 и точку 1
Построение Измерить расстояние от точки 5 до точки 4 отложить его на аксонометрическом чертеже
Построение Измерить расстояние от точки 5 до точки 4 отложить его на аксонометрическом чертеже то же до точки 6, и то же до точки 1 и до точек 2, 8.
Построение Соединить точки 6 и7, точки 3 и 2, и далее последовательно все точки шестигранника.
Построение Поднять высоты из точек основания шестигранника на высоту h = 45 (мм), соединить точки верхнего основания.
Построение Получилась правильная шестигранная призма высотой 45 мм.
Домашнее задание Построить в диметрии и изометрии правильную шестигранную пирамиду с основанием вписанным в окружность R=20 высотой 45 мм.
В этой статье приведено несколько примеров пошагового построения сечения правильной шестиугольной призмы методом следов. Иногда к методу следов был взят в помощь аксиоматический метод. Я старалась избегать пользоваться методом внутреннего проецирования намеренно, чтобы показать построение именно методом следов.
Задача 1. Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Шаг 1. Проведем прямую , принадлежащую плоскости сечения. Благодаря тому, что точки и лежат в основании призмы, прямая также принадлежит плоскости основания, а значит, будет пересекаться с другими прямыми, также лежащими в этой плоскости. Тогда можно провести прямую , и определить точку пересечения и – . Точка принадлежит плоскости грани , поскольку прямая принадлежит ей.
Шаг 2. Точки и можно соединить прямой. Прямая пересечет ребро в точке . Проводим прямую в плоскости основания и находим ее пересечение с прямой – точку .
Шаг 3. Через точки и проводим прямую. Она принадлежит плоскости грани , поэтому обязательно пересечется с прямой этой плоскости – в точке . Точка лежит “под” призмой, ниже ее основания. Точка , благодаря принадлежности прямой , также принадлежит и плоскости грани , а в этой плоскости у нас имеется точка – точка .
Шаг 4. Следовательно, можно соединить точки и прямой. Эта прямая пересечет ребро в точке .
Шаг 5. Точка принадлежит прямой , а следовательно, лежит в плоскости грани , таким образом, ее можно соединить с точкой этой же плоскости прямой . Эта прямая пересечет ребро в точке . Для дальнейшего построения нам нужны точки в плоскости верхней грани призмы. Добудем их. Продлим прямую до пересечения с прямой . Отметим точку .
Шаг 6. Проведем прямую , принадлежащую грани , и найдем точку ее пересечения с прямой – точку . Тогда точки и принадлежат плоскости верхней грани (за счет принадлежности прямым этой плоскости) и их можно соединять прямой.
Шаг 7. Находим точки пересечения прямой с ребрами и – точки и .
Шаг 8. Соединяем все полученные точки отрезками.
Окончательный вид сечения:
Задача 2. Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Шаг 1. Проведем прямую . Она принадлежит секущей плоскости. Также проведем проекцию этой прямой на плоскость нижнего основания призмы – прямую . Точка их пересечения одновременно принадлежит секущей плоскости и плоскости нижнего основания призмы. Обозначим ее .
Шаг 2. Аналогично поступим с точками и : проводим прямую и ее проекцию в плоскости нижнего основания. Их пересечение – точка секущей плоскости , одновременно лежащая в нижнем основании.
Шаг 3. Имея две точки в плоскости нижнего основания, проведем через них прямую , точки которой принадлежат секущей плоскости.
Проведем прямую . Она лежит в плоскости основания, но одновременно – в плоскости боковой грани, поэтому ее точки принадлежат этой боковой грани. Точка пересечения прямых и , таким образом, принадлежит плоскости боковой грани призмы и плоскости сечения.
Шаг 4. Проводим прямую в плоскости боковой грани и отыскиваем точку пересечения ею ребра – точку .
Осталось немного: найти точку плоскости сечения на ребре , и пару точек в плоскости основания.
Шаг 5. Проведем прямые и в плоскости основания. Они пересекут прямую секущей плоскости в точках и .
Шаг 6. Точки и принадлежат плоскости грани , проведем через них прямую. Найдем точку, где эта прямая пересечет ребро – точку . Точки и лежат в плоскости грани . Проводим через них прямую и находим точку пересечения этой прямой с ребром – .
Шаг 7. Соединяем точки отрезками.
Окончательный вид построенного сечения:
Окончательный вид построенного сечения
Задача 3. Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Шаг 1. Проводим прямую секущей плоскости, а также ее проекцию в плоскости основания . Прямая принадлежит плоскости основания и пересечет прямую в точке . Заметим, что точка не является точкой секущей плоскости.
Шаг 2. Из точки проводим перпендикуляр к плоскости основания (к прямой ), его пересечение с прямой – точка – принадлежит секущей плоскости, а также плоскости грани .
Шаг 3. Соединим точки и . Прямая пересечет ребро призмы в точке .
Шаг 4. Заполучив точку , можем провести отрезок . Вот тут-то нам и понадобится аксиоматический метод. Так как грань параллельна грани , то плоскость рассечет ее по прямой, которая будет параллельна . Вот и проведем через такую параллельную прямой прямую. Она пересечет ребро в точке .
Шаг 5. Проведем также через точку прямую, параллельную прямой . Это можно сделать, так как грань параллельна грани . Прямая эта пересечет ребро в точке .
Шаг 6. Соединяем точки отрезками.
Задача 3. Окончательный вид
Задача 4. Построить методом следов сечение шестиугольной призмы плоскостью, проходящей через точки .
Шаг 1. Через точки и проводим прямую секущей плоскости. Также проведем проекции этой прямой на верхнее и нижнее основание – на верхнее, и – на нижнее. Точки пересечения прямой с проекциями – это точки прокола данной прямой оснований призмы. Верхнее основание прямая прошьет в точке , а нижнее – в точке . Таким образом, мы заполучили точки секущей плоскости в плоскостях верхнего и нижнего оснований.
Шаг 2. Точки и принадлежат одной плоскости, проводим через них прямую. Эта прямая даст нам две точки: точку , в которой она пересечет ребро , и точку , в которой она пересечет ребро .
Шаг 3. Приобретя точку в грани , проведем прямую . Она пересечет ребро в точке .
Задача 4. Шаги 2-3.
Шаг 4. Проведем через точку в плоскости основания призмы прямую, параллельную прямой (или можно провести через точки и ). Эта прямая пересечет ребро в точке .
Читайте также: