Как сделать преломление света
Наблюдение преломления света.
На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т. е. происходит отражение света. Если вторая среда прозрачна, то свет частично может пройти через границу сред, также меняя при этом, как правило, направление распространения. Это явление называется преломлением света.
Вследствие преломления наблюдается кажущееся изменение формы предметов, их расположения и размеров. В этом нас могут убедить простые наблюдения. Положим на дно пустого непрозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Установим наклонно карандаш в сосуде с водой.
Если посмотреть на сосуд сбоку, то можно заметить, что часть карандаша, находящаяся в воде, кажется сдвинутой в сторону (рис. 96).
Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света.
Закон преломления света определяет взаимное расположение падающего луча АВ (рис. 97), преломленного DB и перпендикуляра СЕ к поверхности раздела сред, восставленного в точке падения. Угол а называется углом падения, а угол β— углом преломления.
Падающий, отраженный и преломленный лучи нетрудно наблюдать, сделав узкий световой пучок видимым. Ход такого пучка в воздухе можно проследить, если пустить в воздух немного дыма или же поставить экран под небольшим углом к лучу. Преломленный пучок также виден в подкрашенной флюоресцеином воде аквариума (рис. 98).
Вывод закона преломления света. Закон преломления света был установлен опытным путем в XVII веке. Мы его выведем с помощью принципа Гюйгенса.
Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Обозначим скорость волны в первой среде через v1, а во второй — через v2.
Пусть на плоскую границу раздела двух сред (например, из воздуха в воду) падает плоская световая волна (рис. 99). Волновая поверхность АС перпендикулярна лучам А1А и В1В. Поверхности MN сначала достигнет луч А1А. Луч В1В достигнет поверхности спустя время
Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае это плоскость BD. Она является огибающей вторичных волн.
где n — постоянная величина, не зависящая от угла падения.
Из построения (рис. 99) видно, что падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости. Данное утверждение совместно с уравнением (5.4), согласно которому отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред, представляет собой закон преломления света.
Убедиться в справедливости закона преломления можно экспериментально, измеряя углы падения и преломления и вычисляя отношение их синусов при различных углах падения. Это отношение остается неизменным.
Показатель преломления. Постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления второй среды относительно первой.
Из принципа Гюйгенса не только следует закон преломления, но с помощью этого принципа раскрывается физический смысл показателя преломления. Он равен отношению скоростей света в средах, на границе между которыми происходит преломление:
Если угол преломления β меньше угла падения а, то согласно (5.4) скорость света во второй среде меньше, чем в первой.
Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды. Он равен отношению синуса угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.
Пользуясь формулой (5.5), можно выразить относительный показатель преломления через абсолютные показатели преломления n1 и n2 первой и второй сред.
Действительно, так как n1=c/v1 и n2=c/v2 , где с - скорость света в вакууме, то
Значения показателей преломления для некоторых веществ относительно воздуха приведены в таблице 2 (данные относятся к желтому свету).
Ход лучей в треугольной призме.
Закон преломления света позволяет рассчитать ход лучей в различных оптических устройствах, например в треугольной призме, изготовленной из стекла или других прозрачных материалов.
На рисунке 100 изображено сечение стеклянной призмы плоскостью, перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и ОВ. Угол φ между этими гранями называют преломляющим углом призмы. Угол 0 отклонения луча зависит от преломляющего угла призмы ф, показателя преломления n материала призмы и угла падения а. Он может быть вычислен с помощью закона преломления (5.4).
При прохождении света из оптически менее плотной среды в более плотную, например из воздуха в стекло или воду, v1 и v2 согласно закону преломления (5.4) показатель преломления 1. Поэтому а>β (рис. 101, а):
Преломленный луч по выходе из оптически более плотной среды пойдет по линии бывшего падающего луча, поэтому а ао. При падении света на границу двух сред световой луч, как об этом уже упоминалось, частично преломляется, а частично отражается от нее. При а>a0 преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.
Для наблюдения полного отражения можно использовать стеклянный полуцилиндр с матовой задней поверхностью. Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска (рис. 103). Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности. На этой поверхности луч не преломляется. На плоской поверхности луч частично преломляется и частично отражается. Отражение происходит в соответствии с законом отражения, а преломление — в соответствии с законом преломления (5.4).
Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка растет, в то время как яркость (энергия) преломленного пучка падает. Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90°. Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела (см. рис. 102), доля отраженной энергии составляет почти 100%. Повернем осветитель, сделав угол падения а большим ао. Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела, т. е. происходит полное отражение света.
На рисунке 104 изображен пучок лучей от источника, помещенного в воде недалеко от ее поверхности. Большая интенсивность света показана большей толщиной линии, изображающей соответствующий луч.
ТЕНЬ ПЛАМЕНИ
Осветите горящую свечу мощной электрической лампой. На экране из белого листа бумаги появится не только тень свечи, но и тень ее пламени
На первый взгляд кажется странным, что сам источник света может иметь собственную тень. Объясняется это тем, что в пламени свечи есть непрозрачные раскаленные частицы и что очень велика разница в яркости пламени свечи и освещающего ее мощного источника света. Этот опыт очень хорошо наблюдать, когда свечу освещают яркие лучи Солнца.
ЗАКОН ОТРАЖЕНИЯ СВЕТА
Для этого опыта нам понадобятся: небольшое прямоугольное зеркало и два длинных карандаша.
Положите на стол лист бумаги и проведите на нем прямую линию. Поставьте на бумагу перпендикулярно проведенной линии зеркало. Чтобы зеркало не упало, позади него положите книги.
Для проверки строгой перпендикулярности нарисованной на бумаге линии к зеркалу проследите, чтобы
и эта линия и ее отражение в зеркале были прямолинейными, без излома у поверхности зеркала. Это мы с вами создали перпендикуляр.
В роли световых лучей в нашем опыте выступят карандаши. Положите карандаши на листок бумаги по разные стороны от начерченной линии концами друг к другу и к той точке, где линия упирается в зеркало.
Теперь проследите, чтобы отражения карандашей в зеркале и карандаши, лежащие перед зеркалом, образовывали прямые линии, без излома. Один из карандашей будет играть роль падающего луча, другой — луча отраженного. Углы между карандашами и начерченным перпендикуляром получаются равными друг другу.
Если теперь вы повернете один из карандашей (например, увеличивая угол падения), то обязательно нужно повернуть и второй карандаш, чтобы не было излома между первым карандашом и его продолжением в зеркале.
Всякий раз, изменяя угол между одним карандашом и перпендикуляром, нужно проделывать это и с другим карандашом, чтобы не нарушить прямолинейности светового луча, который карандаш изображает.
ЗЕРКАЛЬНОЕ ОТРАЖЕНИЕ
Бумага бывает разных сортов и отличается своей гладкостью. Но даже очень гладкая бумага не способна отражать, как зеркало, она совсем не похожа на зеркало. Если такую гладкую бумагу рассматривать через увеличительное стекло, то сразу можно увидеть ее волокнистое строение, разглядеть впадинки и бугорки на ее поверхности. Свет, падающий на бумагу, отражается и бугорками, и впадинками. Эта беспорядочность отражений создает рассеянный свет.
Однако и бумагу можно заставить отражать световые лучи по-другому, чтобы не получался рассеянный свет. Правда, даже очень гладкой бумаге далеко до настоящего зеркала, но все-таки и от нее можно добиться некоторой зеркальности.
Возьмите лист очень гладкой бумаги и, прислонив его край к переносице, повернитесь к окну (этот опыт надо делать в яркий, солнечный день). Ваш взгляд должен скользить по бумаге. Вы увидите на ней очень бледное отражение неба, смутные силуэты деревьев, домов. И чем меньше будет угол между направлением взгляда и листом бумаги, тем яснее будет отражение. Подобным образом можно получить на бумаге зеркальное отражение свечи или электрической лампочки.
Чем же объяснить, что на бумаге, хоть и плохо, все-таки можно видеть отражение?
Когда вы смотрите вдоль листа, все бугорки бумажной поверхности загораживают впадинки и превращаются как бы в одну сплошную поверхность. Беспорядочных лучей от впадин мы уже не видим, они нам теперь не мешают видеть то, что отражают бугорки.
ОТРАЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ЛУЧЕЙ
Возьмите небольшое прямоугольное зеркало и поставьте его поперек светлых полосок. На бумаге появятся полоски отраженных лучей.
Поверните зеркало, чтобы лучи падали на него под некоторым углом. Отраженные лучи тоже повернутся. Если мысленно провести перпендикуляр к зеркалу в месте падения какого-нибудь луча, то угол между этим перпендикуляром и падающим лучом будет равен углу отраженного луча. Как бы вы ни изменяли угол падения лучей на отражающую поверхность, как бы ни поворачивали зеркало, всегда отраженные лучи будут выходить под таким же углом.
Если нет маленького зеркала, его можно заменить блестящей стальной линейкой или лезвием безопасной бритвы. Результат будет несколько хуже, чем с зеркалом, но все-таки опыт провести можно.
С бритвой или линейкой возможно проделать еще и такие опыты. Согните линейку или бритву и поставьте на пути параллельных лучей. Если лучи попадут на вогнутую поверхность, то они, отразившись, соберутся в одной точке.
ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ
Интересное явление происходит с лучом света, который выходит из более плотной среды в менее плотную, например, из воды в воздух. Лучу света не всегда удается это сделать. Все зависит от того, под каким углом он пытается выйти из воды. Здесь угол - это угол, который луч образует с перпендикуляром к поверхности, через которую он хочет пройти. Если этот угол равен нулю, то он свободно выходит наружу. Так, если положить на дно чашки пуговицу и смотреть на нее точно сверху, то пуговица хорошо видна.
Если же увеличивать угол, то может наступить момент, когда нам будет казаться, что предмет исчез. В этот момент лучи полностью отразятся от поверхности, уйдут в глубину и до наших глаз не дойдут. Такое явление называется полным внутренним отражением или полным отражением.
Опыт 1
Сделайте из пластилина шарик диаметром 10— 12 мм и воткните в него спичку. Из плотной бумаги или картона вырежьте кружок диаметром 65 мм. Возьмите глубокую тарелку и натяните на ней параллельно диаметру две нитки на расстоянии трех сантиметров друг от друга. Концы ниток закрепите на краях тарелки пластилином или лейкопластырем.
Затем, проткнув шилом кружок в самом центре, вставьте в отверстие спичку с шариком. Расстояние между шариком и кружком сделайте около двух миллиметров. Положите кружок шариком вниз на натянутые нитки в центре тарелки. Если посмотреть сбоку, шарик должен быть виден. Теперь налейте в тарелку воду до самого кружка. Шарик исчез. Световые лучи с его изображением уже не дошли до наших глаз. Они, отразившись от внутренней поверхности воды, ушли в глубь тарелки. Произошло полное отражение.
Опыт 2
Опыт 3
Налейте в стакан воду и погрузите в нее стеклянную пипетку. Если ее рассматривать сверху, немного наклонив в воде, чтобы хорошо была видна ее стеклянная часть, она будет так сильно отражать световые лучи, что станет словно зеркальной, будто сделана из серебра. Но стоит нажать на резинку пальцами и набрать в пипетку воду, как сразу же иллюзия исчезнет, и мы увидим только стеклянную пипетку — без зеркального наряда. Зеркальной ее делала поверхность воды, соприкасавшаяся со стеклом, за которым был воздух. От этой границы между водой и воздухом (стекло в данном случае не учитывается) отражались полностью световые лучи и создавали впечатление зеркальности. Когда же пипетка наполнилась водой, воздух в ней исчез, полное внутреннее отражение лучей прекратилось, потому что они просто стали проходить в воду, заполнившую пипетку.
Обратите внимание на пузырьки воздуха, которые иногда бывают в воде на внутренней стороне стакана. Блеск этих пузырьков тоже результат полного внутреннего отражения света от границы воды и воздуха в пузырьке.
ХОД СВЕТОВЫХ ЛУЧЕЙ В СВЕТОВОДЕ
Хотя световые лучи распространяются от источника света по прямым линиям, можно заставить их идти и по кривому пути. Сейчас изготовляют тончайшие световоды из стекла, по которым световые лучи проходят большие расстояния с различными поворотами.
Простейший световод можно сделать довольно просто. Это будет струя воды. Свет, идя по такому световоду, встретив поворот, отражается от внутренней поверхности струи, не может вырваться наружу и идет дальше внутри струи до самого ее конца. Частично вода рассеивает небольшую долю света, и поэтому в темноте мы все-таки увидим слабо светящуюся струю. Если вода слегка забелена краской, светиться струя будет сильнее.
Возьмите шарик для настольного тенниса и проделайте в нем три отверстия: для крана, для короткой резиновой трубки и против этого отверстия третье — для лампочки от карманного фонаря. Лампочку вставьте внутрь шарика цоколем наружу и прикрепите к нему два провода, которые потом присоедините к батарейке от карманного фонаря. Шарик укрепите на кране с помощью изоляционной ленты. Все места соединений промажьте пластилином. Затем обмотайте шарик темной материей.
Откройте кран, но не очень сильно. Струя воды, вытекающая из трубки, должна, изгибаясь, падать недалеко от крана. Свет погасите. Присоедините провода к батарейке. Лучи света от лампочки пройдут через воду в отверстие, из которого вытекает вода. Свет пойдет по струе. Вы увидите лишь ее слабое свечение. Основной поток света идет по струе, не вырывается из нее даже там, где она изгибается.
ОПЫТ С ЛОЖКОЙ
Возьмите блестящую ложку. Если она хорошо отполирована, то даже кажется немножко зеркальной, что-то отражает. Закоптите ее над пламенем свечи, да почернее. Теперь ложка ничего уже не отражает. Копоть поглощает все лучи.
Ну, а теперь опустите закопченную ложку в стакан с водой. Смотри: заблестела, как серебро! Куда же копоть-то девалась? Отмылась, что ли? Вынимаешь ложку — черна по-прежнему.
Чем чернее, тем светлее!
ПРЕЛОМЛЕНИЕ СВЕТА
Вы знаете, что луч света прямолинеен. Вспомните хотя бы луч, пробившийся сквозь щелку в ставне или в занавесе. Золотой луч, полный кружащихся пылинок!
Но… физики привыкли все проверять на опыте. Опыт со ставнями, конечно, очень нагляден. А что вы скажите об опыте с гривенником в чашке? Не знаете, этого опыта? Сейчас мы с вами его сделаем. Положите гривенник в пустую чашку и присядьте так, чтобы он перестал быть виден. Лучи от гривенника шли бы прямо в глаз, да край чашки загородил им дорогу. Но я сейчас устрою так, что вы снова увидите гривенник.
Вот я наливаю в чашку воду… Осторожно, потихоньку, чтобы гривенник не сдвинулся… Больше, больше…
Можно в ту же чашку или в стакан наклонно опустить чайную ложечку. Смотрите, сломалась! Конец, погруженный в воду, переломился вверх! Вынимаем ложечку — она и целая, и прямая. Значит, лучи действительно ломаются!
Источники: Ф. Рабиза "Опыты без приборов", "Здравствуй физика" Л.Гальперштейн
Направление световой волны, достигающей границы раздела двух сред, изменяется. Одна часть света будет отражена, а вторая часть проникает в другую среду, меняя при этом направление распространения, — происходит преломление света.
Преломление света — это изменение направления светового луча, проникающего из одной прозрачной среды в другую.
На рисунке показано преломление света на плоской границе, разделяющей две прозрачные среды. Красный луч — направление распространения падающей волны, синий луч — преломленной волны.
Относительный и абсолютный показатель преломления
Показатель преломления (коэффициент преломления) зависит от оптических характеристик двух сред:
- Из которой луч падает.
- В которую он проникает.
Абсолютным показателем преломления среды называют показатель преломления, полученный при падении светового луча в данную среду из вакуума. Он равен отношению синуса угла падения света в вакууме к синусу угла преломления в данной среде.
n а = sin i п в sin i п р ,
где n а — абсолютный показатель преломления среды,
i п в — угол падения светового луча в вакууме,
i п р — угол падения преломленного светового луча в среде.
Относительный показатель или коэффициент преломления — постоянная величина для данной пары сред. Относительный коэффициент преломления равен отношению синуса угла падения светового луча к синусу угла преломления или отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой.
sin i п sin i п р = n 2 n 1 = n
где i п — угол падения,
i п р — угол преломления,
n 1 — абсолютный показатель преломления первой среды,
n 2 — абсолютный показатель преломления второй среды,
n — относительный показатель преломления.
Угол падения i п и угол преломления i п р измеряют от перпендикуляра к границе сред до соответствующего луча.
Закон преломления света
Падающий на границу раздела двух сред луч, перпендикуляр к этой границе в точке падения и преломленный луч лежат в одной плоскости.
Рассмотрим плоскую волну (фронт АВ), которая распространяется в среде с абсолютным показателем преломления n 1 , вдоль направления I. Скорость волны равна v 1 = c n 1 .
Эта волна падает на границу раздела со средой, в которой абсолютный показатель преломления равен n 2 , а скорость распространения волны равна v 2 = c n 2 .
На прохождение пути ВС падающей волне нужно время, равное ∆ t = B C v 1 .
За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом A D = v 2 ∆ t .
Положение фронта преломленной волны в этот момент времени задается плоскостью DC, направление распространения преломленной волны — лучи III, которые перпендикулярны к DC. Из треугольников Δ A B C и Δ A D C следует, что A C = B C sin i п = A D sin i п р .
Значит, ∆ t · v 1 sin i п = ∆ t · v 2 sin i п р .
Следовательно, закон преломления света можно выразить следующей формулой:
sin i п sin i п р = v 1 v 2 = с n 1 · n 2 c = n 2 n 1 = n 21
Применение на практике, пример решения задачи
Дано: на границу воздуха и воды падают световые лучи, угол их падения равен 30°. Показатель преломления воды равен 1,33.
Найти: угол преломления.
Решение: Пусть γ — угол падения, а α — угол преломления, тогда sin α sin γ = n в о з д у х n в о д а .
sin γ = sin α · n в о д а n в о з д у х = sin 30 ° · 1 , 33 1 = 0 , 5 · 1 , 33 ≈ 0 , 67 . Следовательно, γ=42°.
В ходе этого видеоурока мы познакомимся с явлением преломления света. Выясним, от чего зависит изменение направления луча при переходе из одной среды в другую. Узнаем, что называют относительным показателем преломления среды и от чего он зависит. А также сформулируем закон преломления света.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.
Получите невероятные возможности
Конспект урока "Преломление света. Закон преломления света"
На прошлых уроках мы говорили о том, что в однородной среде свет распространяется прямолинейно. Если пучок света падает на границу раздела двух прозрачных сред, то часть его отражается и возвращается в первоначальную среду. Это явление называется отражением света.
Однако, свет, падая на границу раздела двух сред, не только отражается от неё, но и частично проходит во вторую среду и распространяется в ней. И сегодня мы с вами рассмотрим это явление более подробно.
Для начала проведём такой опыт. Возьмём стакан с водой, опустим в него карандаш так, чтобы он был расположен вертикально. Изменив угол наклона увидим, что на границе воды и воздуха карандаш кажется переломленным.
Это объясняется тем, что световой пучок при переходе из одной среды в другую изменяет направление распространения.
Изменение направления распространения света при переходе из одной среды в другую называют преломлением света.
Преломление света вы можете наблюдать, когда опускаете ложку в стакан с чаем, входите в воду в реке или в море.
А каким законам подчиняется преломление света? Чтобы ответить на этот вопрос, проведём такой опыт. В центре оптического диска закрепим тонкую стеклянную пластинку и направим на неё узкий пучок света.
Часть света отразиться от пластинки, а часть света проникает через пластинку. Этот луч света называется преломлённым лучом.
Угол между перпендикуляром, восставленным к границе раздела двух сред в точке падения луча, и преломлённым лучом называется углом преломления.
Сравнив углы падения и преломления, мы видим, что угол преломления меньше угла падения.
Увеличим угол падения — угол преломления тоже увеличивается, но по-прежнему он меньше угла падения.
Если стекло заменить, например, водой и пустить световой луч под тем же углом, что и на стеклянную пластинку, то угол преломления в воде будет несколько больше, чем в стекле, но всё равно меньше угла падения.
Различие углов падения и преломления обусловлено тем, что стекло, вода и воздух имеют разную оптическую плотность.
Не путайте оптическую плотность с плотностью вещества. Есть вещества, у которых плотность меньше, чем плотность воды, например, скипидар. В то же время скипидар оптически более плотный, чем вода. Дело в том, что оптическая плотность среды характеризуется скоростью распространения света в ней. Чем больше скорость распространения света в среде, тем меньше её оптическая плотность.
Следовательно, оптическая плотность стекла больше, чем оптическая плотность воздуха, так как скорость распространения света в нём меньше.
Рассмотрим ещё один пример. Стеклянный сосуд, на дне которого находится плоское зеркало, заполним водой, подкрашенной флюоресцирующей жидкостью.
На поверхность воды под некоторым углом к ней направим пучок света. Он изменяет своё направление, поскольку вода — среда оптически более плотная, чем воздух.
Из опыта видно, что при переходе света из воздуха в воду угол падения больше угла преломления, а при переходе из воды в воздух угол падения меньше угла преломления.
На основании проделанных опытов мы можем сделать следующие выводы. Во-первых, если луч света переходит из среды оптически менее плотной в среду оптически более плотную, то угол преломления меньше угла падения. То есть преломлённый луч как бы прижимается к перпендикуляру
Если свет переходит из среды оптически более плотной в среду оптически менее плотную, то угол преломления больше угла падения. То есть преломлённый луч прижимается к границе раздела двух сред. Этот вывод логически следует из свойства обратимости, которое характерно не только для падающего и отражённого лучей, но и для падающего и преломлённого лучей.
И вновь обратимся к опыту. В центре оптического диска закрепим сосуд с водой и направим на него узкий пучок света. Будем менять угол падения света и следить за изменением угла преломления.
При изменении угла падения, угол преломления тоже меняется и соотношение между углами не сохраняется. Однако, если составить отношение синусов углов падения и преломления, то мы увидим, что оно остаётся постоянным:
Таким образом, для любой пары веществ можно записать, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред:
Эту величину называют относительным показателем преломления для двух сред. Чем он больше, тем сильнее преломляется свет на границе раздела двух сред.
Мы уже говорили, что преломляющая способность вещества зависит от его оптической плотности, которая, в свою очередь, зависит от скорости распространения света в веществе. Таким образом, относительный показатель преломления показывает, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:
Если свет падает из вакуума в вещество, то вводится величина, называемая абсолютным показателем преломления. Он показывает, во сколько раз скорость света в вакууме больше чем в данной среде.
где с = 3 ∙ 10 8 м/с.
Теперь мы можем сформулировать закон преломления света: лучи, падающий и преломлённый, лежат в одной плоскости с перпендикуляром, проведённым в точке падения луча к границе раздела двух сред. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред:
Отметим и то, что когда луч падает перпендикулярно на границу раздела двух сред, он не испытывает преломления, что можно подтвердить опытом:
Разумеется, что не будет преломления и на границе, разделяющей две среды с одинаковой оптической плотностью, т. е. на границе раздела сред, в которых скорость света одинакова.
Пример решения задач.
Задача. На дне водоёма глубиной 3 м находится источник света. На какой глубине увидит источник света наблюдатель, если он смотрит с лодки вертикально вниз, а показатель преломления воды равен 1,33?
Читайте также: