Как сделать последовательное включение светодиодов
Подключение одного светодиода никогда не создаст больших проблем. Что делать, если необходимо запитать два, три, четыре и более светодиодов? Верно. Нужно собрать LEDs в строку ( цепочку ). Соединения могут быть нескольких типов: параллельное соединение светодиодов, последовательное соединение светодиодов и параллельно-последовательное. Напишу несколько слов об этих соединениях. Авось кому-нибудь пригодится.
Для тех, кто еще не знает — самым оптимальным является последовательное соединение светодиодов. В этом случае ток на каждом LED, соединенном последовательно, будет одинаковым. Такое соединение нам позволяет легко контролировать токи.
Однако, не смотря на это, существуют источники питания, мощность которого не позволит запитать последовательные светодиоды. В этом случае нам и поможет параллельное соединение светодиодных источников.
Принципы подключения
Светоизлучающие диоды активно применяются в подсветке, индикации. Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов.
К основным способам подключения относятся:
- параллельное;
- последовательное;
- комбинированное.
Основные причины выхода из строя светодиодных цепочек:
- неправильное соединение;
- некачественные диоды или блоки питания.
Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока. При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток.
Важно! Любой компонент имеет техдокументацию, в которой указывается полярность. Ее узнать можно по маркировке компонента или визуально.
Полярность
Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.
Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.
Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.
По технической документации. В паспорте прибора будет написано, какая полярность.
После определения плюса и минуса электродов нужно разобраться с методом подсоединения.
Коммутация получившейся гирлянды с контроллером
Если открыть корпус китайского устройства, на обратной от питающего провода стороне, с краю, можно увидеть 2 или 3 выходных контакта. Если их 2, сразу понятно, как производить пайку, если же 3, то используются крайние, а центральный остается пустым.
При подобной работе не следует использовать мощный паяльник с толстым жалом – возникает опасность испортить оборудование. Если иного выхода нет, то необходимо намотать на наконечник медный провод без изоляции, сечением 4 или 6 мм2 таким образом, чтобы конец жилы был длиннее на 3-4 см. Результатом подобных действий станет уменьшение температуры жала паяльника и более аккуратная работа.
После того как параллельно соединенные светодиоды и китайский контроллер стали одной гирляндой, можно произвести ее проверку, включив сделанный своими руками прибор в сеть. Кнопка на корпусе даст возможность переключения режимов мигания.
Последовательное подключение
Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.
Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.
Преимущества и недостатки
- количество светодиодов ограничено падением напряжения;
- если сломается один элемент, непригодной становится вся цепочка.
Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.
Варианты соединений
Чтобы выполнить последовательное соединение светодиодов на 220В, воспользуйтесь схемой ниже.
В данном случае в большей степени ограничивает ток конденсатор С1, он играет роль реактивного сопротивления. Подробнее о расчете конденсатора мы писали в статье. Для получения необходимого значения емкости конденсатора воспользуйтесь онлайн калькулятором:
Так вы можете подключить даже один светодиод.
Если вы хотите собрать схему последовательного соединения светодиодов на 100 вольт постоянного напряжения, в цепь нужно включить порядка 30 светодиодов. Тогда необходимое напряжение будет порядка 90 вольт. Расчёт резистора выполнить по формуле в предыдущих разделах статьи.
Конденсатор нужен для сглаживания пульсаций тока, резистор стоящий параллельно – для разряда конденсатора после отключения прибора, в целях безопасности. Если источник питания достаточно стабилизирован их можно исключить.
Смешанное подключение
Смешанный тип соединения является самим оптимальным. Он используется во всех LED лентах, гирляндах, светодиодных панелях и представляет собой смесь параллельного и последовательного включений.
Так, параллельно включаются не отдельные элементы, а группы светодиодов. В группах диоды подключаются последовательно через один резистор для каждой цепи.
- при поломке элемента из одной цепочки вся гирлянда будет светить дальше;
- нужно не так много резисторов.
В этом способе учтены и исправлены все недостатки из параллельного и последовательного соединений.
Особенности пайки SMD-компонентов
Для изготовления LED-ленты используются монтируемые на поверхность СМД-светодиоды. Их особенность в том, что без специального оборудования заменить сгоревший элемент не удастся. Дело в том, что здесь необходима станция – обычным паяльником легко перегреть чипы, которые не переносят слишком высокой температуры. Нередки случаи, когда слишком самоуверенные домашние мастера умудрялись заменить SMD-компоненты при помощи обычного прибора, однако через 2-3 часа беспрерывной работы светодиодная лента снова выходила из строя.
Вообще, LED-полоса – это универсальное устройство, которое применяется в различных областях. Это может быть подсветка подвесных потолков, мебели, салона автомобиля или компьютерной клавиатуры…всего и не перечислить.
Как подключить мощный светодиод
Для мощного светодиода потребуется источник питания с большим номиналом. Так, диод 1 В будет загораться, если по нему будет протекать ток величиной не менее 350 мА. Для 5 В элемента потребуется источник тока с нагрузкой не менее 1,4 А.
Схема соединения также будет включать токоограничивающий резистор и интегральный стабилизатор напряжения. Он помогает обезопасить светодиод от скачков электричества. Чаще всего используется интегральная микросхема LM317 для стабилизации. Подключить мощный светодиод можно параллельно, последовательно и комбинированным способом.
Используем параллельное соединение нескольких MAX40200 в качестве идеального диода
В данной статье рассматривается возможность использования нескольких интегральных схем (ИС) MAX40200 производства Maxim Integrated в параллельном подключении, а также их комбинированные параметры. Совместное применение нескольких ИС MAX40200 в роли идеального диода должно суммарно обеспечивать такие же характеристики, как и у одного более крупного устройства.
Общие рекомендации
MAX40200 – это идеальный диодный токовый переключатель с настолько малым падением напряжения прямого смещения на полупроводниковом переходе, что оно почти на порядок меньше, чем у диодов Шоттки. В MAX40200 реализована защита самой ИС и подключенных к выходу цепей от превышения температуры.
В отключенном состоянии (на выводе EN установлен низкий уровень) ИС блокирует прямое и обратное напряжения до 6 В, что делает ее пригодной для большинства низковольтных портативных электронных устройств. При обратном смещении диодного перехода MAX40200 ток утечки меньше, чем у многих сопоставимых диодов Шоттки.
MAX40200 работает с напряжением питания 1,5…5,5 В.
Идеальный интегральный диод MAX40200 имеет целый ряд преимуществ, среди которых:
- незначительный ток в дежурном режиме – 7 мкА;
- малая рассеиваемая мощность – всего 125 мкА при токе 1 А;
- небольшое падение напряжения (примерно 18 мВ) для прямого тока – до 100 мА;
- время переключения между прямым и обратным напряжением смещения – менее 100 мкс;
- компактный корпус типа WLP с четырьмя выводами;
- отпирающий/запирающий сигнал и тепловая защита.
Одной из важных особенностей ИС MAX40200, применяемой в качестве идеальных диодов, является использование MOSFET вместо обычной биполярной полупроводникой технологии, что позволяет, по сути, обеспечить для нагрузки гальваническую развязку по току. В данной статье исследуются характеристики нескольких параллельно соединенных ИС MAX40200.
Комплект из нескольких идеальных диодов должен обеспечивать те же характеристики, что и один более мощный диод. Для этого необходимо подобрать некоторое количество MAX40200. Например, можно использовать две параллельно соединенных ИС для системы на 2 А и, соответственно, четыре параллельных ИС для системы на 4 А.
Экспериментальные результаты
На рисунке 1 показаны четыре параллельно подключенных MAX40200, которые обеспечивают ток до 4 А. Если все ИС размещены близко друг к другу, то они имеют почти одинаковую температуру. И, следовательно, при одинаковой температуре должны иметь сходные характеристики. На рисунке 2 показана зависимость падения прямого напряжения на ИС от протекающего постоянного тока. На рисунке 3 сравниваются графики зависимости напряжения от тока для одной и четырех ИС MAX40200, подтверждающие, что характеристики для одного устройства MAX40200 и для четырех MAX40200 очень похожи.
Рис. 1. Типичная схема параллельного подключения диодов для увеличения нагрузочной способности цепи по току
Рис. 2. Зависимость прямого падения напряжения на MAX40200 от величины протекающего через них прямого тока
Рис. 3. Сравнение характеристик одного и четырех MAX40200
На рисунке 4 представлена схема с открытием и закрытием диодов для протекающего тока. На рисунках 5 и 6 представлены наблюдаемые результаты.
Рис. 4. Схема включения/выключения диодов
Рис. 5. Переходные процессы при открытом диоде (IFWD = 4 A)
Рис. 6. Переходные процессы при открытом/закрытом диоде (IFWD = 4 A)
Обратите внимание, что VIN на рисунке 5 представляет важный переходный процесс. Это связано с тем, что переходная характеристика меняющейся нагрузки источника питания используется при токе 0…4 А. Этот переходный процесс также виден на VLOAD.
На рисунке 7 представлена схема для измерения переходных характеристик на нагрузке. Здесь могут возникать условия для появления кратковременной повышенной нагрузки, когда проводящее устройство должно быть способным обеспечить необходимый ток с незначительными колебаниями VFWD. Это связано с тем, что VLOAD (V) обычно является источником питания для последующих цепей. На рисунке 8 показаны переходные процессы при изменяющейся нагрузке.
Рис. 7. Схема для контроля переходных процессов на нагрузке
Рис. 8. Переходные процессы на нагрузке (IFWD = 200 мА…3,8 A)
Когда VIN2 (3,3 В) меньше чем VIN1 (3,6 В), выбранным источником напряжения будет VIN1 и диод D1 оказывается обратносмещенным. Когда VIN2 будет более 3,6 В, D1 переходит в проводящее состояние, а U1…U4 выключаются. На рисунках 10а и 10б отображены переходные характеристики схемы, представленной на рисунке 9.
Особенности трассировки печатной платы
На рисунке 11 показан типичный пример размещения дорожек на печатной плате для четырех параллельно соединенных ИС MAX40200. Как видно, цепи VDD и OUT на плате имеют медные площадки большого размера для уменьшения сопротивления и плотности тока. Обе цепи – VDD и OUT – размещены на верхней стороне платы без использования межслойных перемычек.
Поскольку физический механизм, обеспечивающий разделение тока нагрузки, является тепловым, параллельно соединенные идеальные диоды должны располагаться как можно ближе друг к другу. Учитывая вероятность повышенных токов или отсутствия параллельно подключенных компонентов, следует использовать печатную плату с наиболее толстым слоем меди. Это помогает лучше рассеивать выделяющееся тепло и уменьшает падение напряжения при высоких токах.
Обратите внимание, что корпус WLP оптимален для параллельного соединения нескольких устройств – этому способствуют его небольшие размеры и хорошая теплопроводность.
Рис. 11. Пример компоновки печатной платы
Как показано на рисунке 12, отдельные компоненты размещены с зазором в 12 мм, что гарантирует термическую равноценность всех ИС MAX40200. Параллельно соединенные ИС следует защитить от повышенного теплового воздействия внешних источников тепла. В противном случае все работающие при высокой температуре устройства будут иметь повышенное RON.
Неравномерное распределение температуры на плате под установленными ИС приводит к неравному разделению тока.
Не рекомендуется использовать переходные отверстия на основных проводящих участках платы (VDD или OUT), так как они добавляют паразитную индуктивность и увеличивают эффективное RON в основной цепи, таким образом повышая прямое падение напряжения (VFWD).
Рис. 12. Расстояние между размещенными рядом MAX40200
На рисунке 13 показана разница температур окружающей среды и платы с параллельно соединенными MAX40200. Обратите внимание что разность температур прямо пропорциональна прямому току нагрузки, проходящему через эти устройства. Данный результат был получен на плате, изображенной на рисунке 12.
Рис. 13. Температура печатной платы, изменяющаяся в зависимости от температуры окружающей среды
Почему так хорошо работают блоки из нескольких параллельных диодов
Сопротивление открытого канала MOSFET имеет резко положительный температурный коэффициент, который гарантирует, что более горячий MOSFET имеет большее сопротивление, чем более холодный, что приводит к протеканию через него немного повышенного тока.
Поэтому для двух таких MOSFET устанавливается тепловой баланс, соответствующий токовому балансу. Такой тепловой баланс гарантируется правильной компоновкой печатной платы. Вообще, плотное размещение компонентов является обоснованным.
Распространенные ошибки при подключении
Самые часто встречающиеся ошибки при соединении светодиодов:
- Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
- Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
- Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
- Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
- Подключение напрямую к сети 220 В без защиты.
Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.
Вместо эпилога
Знать, какое соединение называется последовательным, а какое параллельным и уметь его выполнить обязан каждый уважающий себя домашний мастер. Эти навыки пригодятся не только при изготовлении гирлянд. С различным видами соединений можно столкнуться где угодно. К примеру, в домашней электросети все розетки подключены параллельно, в то время как выключатели имеют последовательную коммутацию. Главное – помнить об основных правилах, соблюдать их и быть внимательным к мелочам. В этом случае любая работа, за которую возьмется домашний мастер, будет выполнена безопасно, надежно и на должном уровне.
Основные выводы
Все светодиоды, в не зависимости от их рабочего напряжения или силы тока, подключаются последовательно или параллельно. Способ включения может быть и комбинированным – в таком случае устраняются недостатки последовательного и параллельного соединений. Важно уметь правильно собирать цепь, подбирать источник питания, считать номиналы токоограничивающих резисторов и нужное количество светодиодов, чтобы схема функционировала. Соединение без токоограничивающего резистора и других защитных элементов приведет к поломке диода.
Лампы и светильникиКакие лампочки лучше для дома: светодиодные или энергосберегающие
Лампы и светильникиКак сделать светильник из светодиодной ленты на 12 и 220 Вольт своими руками
Несколько советов по созданию гирлянды
Выбирая цвет будущего елочного украшения, не стоит обращать внимания на RGB элементы. Сборка для начинающего мастера может стать слишком сложной, а тратить лишние деньги, чтобы после подключить их как обычные компоненты, будет непозволительной роскошью. Лучше всего выполнить параллельное соединение светодиодов разного цвета. Конечно, придется произвести дополнительные расчеты параметров резисторов, однако результат будет намного интереснее, чем при использовании однотонных излучателей.
Понятно, что готовая гирлянда на светодиодах в магазине стоит довольно дешево. Но следует понимать, что изготовленное своими руками изделие покажется во много раз красивее. А удовлетворение от того, что все получилось так, как задумано не измерить никакими деньгами.
При изготовлении подобных украшений следует быть предельно внимательным, следить, чтобы не осталось оголенных участков, а провода внутри контроллера не перехлестнулись. Контакты должны быть пропаяны качественно, во избежание нагрева. Необходимо понимать, что она будет располагаться на елке, а хвоя очень быстро вспыхивает за счет содержащейся в ней смолы.
Питающий кабель, идущий от контроллера на розетку, имеет смысл заменить – китайские производители стараются экономить на всем. Именно по этой причине жилы этого провода чуть толще волоса. После вскрытия корпуса контроллера имеет смысл проверить качество пайки соединений и контактов – в дешевых моделях это больное место.
Хорошие и плохие схемы включения светодиодов
В предыдущих статьях были описаны различные вопросы подключения светодиодов. Но в одной статье всего не написать, поэтому придется эту тему продолжить. Здесь речь пойдет о различных способах включения светодиодов.
Как было сказано в упомянутых статьях, светодиод является прибором токовым, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.
Здесь Uпит. – напряжение питания, Uпад. – падение напряжение на светодиоде, R – сопротивление ограничивающего резистора, I – ток через светодиод.
Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.
Но тут, кроме перегорания, есть и еще одно неприятное свойство – деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.
Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.
Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка - сувенир просто выкинули.
Рисунок 2. Схема плохая, но применяется достаточно часто.
Рисунок 3. Хорошая схема, правильная.
Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.
А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.
Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.
Рисунок 4. Совсем плохая схема включения.
Рисунок 5. Так уже немного лучше.
Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах – двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.
Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!
Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.
Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.
Рисунок 6. А вот так светодиоды прослужат очень долго.
Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.
Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?
Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.
Рисунок 7. Параллельное включение гирлянд.
Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?
Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.
Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.
Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.
Рисунок 8. Падение напряжения на светодиодах разных цветов.
Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.
Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.
Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.
Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.
Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.
Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.
Смотрите также из ранее опубликованного на сайте: Как подключить светодиод к осветительной сети
Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от стабилизированного источника постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?
Рисунок 10. Регулируемый стабилизатор тока SSC0018
Технические характеристики стабилизатора показаны на рисунке 11.
Рисунок 11. Технические характеристики стабилизатора тока SSC0018
Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.
Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.
Рисунок 12. Подключение для питания светодиодов, соединенных параллельно
Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.
Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.
На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.
Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018
Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.
Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.
Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.
Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.
Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.
Рисунок 14. Расчет стабилизатора тока с помощью программы StabDesign.
Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.
Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.
Казалось бы, на этом рассказ о светодиодах можно закончить. Но есть еще светодиодные ленты, о которых будет рассказано в следующей статье.
Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.
Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.
- 1. Типы схем
- 2. Обозначение на схеме
- 3. Подключение светодиода к сети 220в, схема
- 4. Подключение к постоянному напряжению
- 5. Самый простой низковольтный драйвер
- 6. Драйвера с питанием от 5В до 30В
- 7. Включение 1 диода
- 8. Параллельное подключение
- 9. Последовательное подключение
- 10. Подключение RGB LED
- 11. Включение COB диодов
- 12. Подключение SMD5050 на 3 кристалла
- 13. Светодиодная лента 12В SMD5630
- 14. Светодиодная лента RGB 12В SMD5050
Типы схем
Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:
-
со стабилизированным током;
- блок питания со стабилизированным напряжением.
В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.
Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.
Калькулятор учитывает 4 параметра:
- снижение напряжения на одном LED;
- номинальный рабочий ток;
- количество LED в цепи;
- количество вольт на выходе блока питания.
Разница кристаллов
Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.
Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.
Обозначение на схеме
Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.
Подключение светодиода к сети 220в, схема
Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.
Схема драйвера для светодиодов бывает двух видов:
- простая на гасящем конденсаторе;
- полноценная с использованием микросхем стабилизатора;
Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.
Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.
Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.
Подключение к постоянному напряжению
Далее будут рассмотрены схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный полярным напряжением на выходе. Несколько примеров:
- 3,7В – аккумуляторы от телефонов;
- 5В – зарядные устройства с USB;
- 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
- 19В – блоки от ноутбуков, нетбуков, моноблоков.
Самый простой низковольтный драйвер
Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.
Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.
Драйвера с питанием от 5В до 30В
Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.
В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.
Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.
Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.
Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.
Включение 1 диода
Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.
Параллельное подключение
При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.
Рациональность применений каждого способа рассчитывают исходя из требований к изделию.
Последовательное подключение
Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.
Такое соединение применяют в любой светотехнике:
- светодиодные лампах для дома;
- led светильники;
- новогодние гирлянды на 220В;
- светодиодные ленты на 220.
В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.
Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.
Подключение RGB LED
Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.
Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.
Включение COB диодов
Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.
Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.
Подключение SMD5050 на 3 кристалла
От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.
При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.
При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.
Светодиодная лента 12В SMD5630
Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.
Светодиодная лента RGB 12В SMD5050
В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.
Подключил 4 потолочных светильника с Led Driver,но почемуто один самый первый или самый последний в цепи мигает при выключином свете. Менял провода местами,менял блок,ничего не помогает.подскажите
Может выключатель с подсветкой. Выключатель должен размыкать фазу. Бывает небольшая наводка с другой линии на 220 вольт, заряд постепенно накапливается и светильник вспыхивает. Да и китайская схемотехника тут тоже влияет.
Добрый день.
Есть светодиодная матрица на на 64 светодиода 2835 включенная в 220в на ней есть 3-и микросхемы, произведение китайское.
Проблема заключается в том, что есть подсветка не всех светодиодов при выключенном 1-м из проводов из сети, т.е. работает как ночник.
Что можно сделать.
Пир выключении необходимо разрывать фазу, а не ноль. Может у вас выключатель с подсветкой.
HTM 70/230-240 OSRAM
Купите хороший блок питания на 12 вольт и проблема исчезнет. Можете поставить параллельно конденсатор на 500-1000 микрофарад.
Здравствуйте. Вопрос такой: в здании поменяли светильники с накаливания на светодиодные. При снятии векторной диаграммы со счётчика электроэнергии заметили, что характер нагрузки поменялся на активно-емкостную (ток стал опережать напряжение на 30 градусов). Не может ли быть связано с установленными в светильника конденсаторами? Спасибо.
Коэффициент мощности изменился из-за светильников.
Добрый день!
На приборе установлено устройство плавного пуска ламп накаливания (220 вольт), при замене на светодиодные лампы, последние начинают мерцать.
Можно ли что нибудь сделать?
Уберите блок плавного пуска.
Доброго здоровья. Светодиод 3в. 20ма.сколько светодиодов можно подключить последовательно .Блок питания с гасящим конденсатором.
Длина цепи ограничена напряжением. 73 светодиода можно подключить без гасящего конденсатора.
Здравствуйте, как лучше подключить 1w диод от аккумулятора 6v, подойдет ли драйвер с питанием 12v из китая?
С токоограничивающим резистором для одного светодиода мы разобрались, теперь осталось выяснить, как включить несколько светодиодов. Предположим в нашем распоряжении источник напряжения в 12 В и три светодиода АЛ307И. У нас три варианта.
Первый – включить их каждый через свой токоограничивающий резистор, как мы делали на предыдущем практикуме:
В этом случае расчет токоограничивающих резисторов ничем не отличается от предыдущих расчетов (см. практикум «Как включить светодиод«) и будет одинаков для всех светодиодов.
Второй вариант – включить все светодиоды параллельно и нагрузить одним резистором, рассчитанным на тройной ток (светодиодов ведь три):
Но у нас есть еще один вариант – последовательное соединение светодиодов и один токоограничивающий резистор:
В этом случае ток через все светодиоды будет одинаков, единственное условие – напряжение источника питания должно превышать сумму падений напряжений на каждом светодиоде. Как я уже сказал, наш источник питания выдает напряжение 12 В, а рабочее напряжение (U раб) того или иного типа светодиода мы снова смотрим в справочнике по светодиодам . Для АЛ307И Uраб =2.5 В, Iраб = 10 мА . Значит при токе через цепочку светодиодов 10 мА (их номинальный рабочий ток) на ней упадет 7.5 В. Все нормально, нашего источника хватит. Осталось подобрать токоограничивающий резистор. Снова обратимся к закону Ома и рассчитаем номинал гасящего резистора:
Вполне очевидно, что 3 — число светодиодов в цепи. 0.75 – коэффициент надежности.
(12В-7.5В)/0.01А*0.75 = 600 Ом
Важно! Поскольку через все светодиоды течет одинаковый ток, соединять последовательно можно только прибры одного типа с одними теми же паспортными данными! Если в вашем распоряжении разные типы светодиодов, то резистор придется рассчитать и поставить для каждого прибора отдельно.
Ну и если вы предполагаете часто применять расчет гасящих резисторов, то удобнее будет воспользоваться программой для расчета гасящего резистора для светодиодов .
Читайте также: