Как сделать полный разбор суждения
Математическая логика — это раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики.
Алгебра высказываний
Логические операции
Операции над высказываниями задают в виде таблиц, называемых таблицами истинности.
Отрицание высказывания
Конъюнкция высказываний
Дизъюнкция высказываний
В этом случае высказывание А истинно, если истинно хотя бы одно из высказываний, входящих в связку.
Импликация высказываний
Эквивалентность высказываний
Если в выражении присутствуют арифметические операции, операции сравнения и логические операции, то порядок старшинства операций следующий:
- • сначала выполняются арифметические операции (порядок старшинства арифметических операций: первыми выполняются все операции умножения и деления, потом операции сложения и вычитания);
- • затем — операции и операции сравнения (в том порядке, в каком они встречаются в выражении):
- • наконец, логические операции, причем первой везде выполняется операция отрицания, затем конъюнкции, потом дизъюнкции и т. д.
Использование различных операций позволяет в удобной аналитической форме задавать различные множества.
Например, множество точек А, заштрихованное на рис. 1.16, может быть задано следующей формулой:
Система операций называется полной, если всякая формула эквивалентна некоторой формуле, в которую входят только операции из системы . Система введенных пяти операций (отрицания, конъюнкции, дизъюнкции, импликации и эквивалентности) полная, хотя вообще говоря, избыточна, так как одни логические операции могут быть выражены через другие. Например, импликация и эквивалентность можно выразить через отрицание, конъюнкцию и дизъюнкцию следующим образом:
Булевы функции
выражает функцию от переменных А, В и С.
Наиболее важные тождественно истинные формулы получили название Основные законы математической логики.
Основные законы математической логики
1.Коммутативность
2.Ассоциативность
3.Дистрибутивность
4.Законы де Моргана
5.Закон поглощения
6.Закон идемпотентности
8.Закон противоречия
9.Закон исключения третьего
10.Закон двойного отрицания
Пример:
Упростить выражение, используя тождественны преобразования
Существует бесконечное множество тавтологий. Некоторы из них легли в основу методов доказательства.
Основные методы доказательств
При построении любой теории выделяется некоторый набор высказываний, так называемых аксиом, истинность которых постулируется. Из аксиом чисто логическим путем может был установлена истинность некоторых других высказываний называемых теоремами. Последовательность высказываний рассматриваемой теории, каждое из которых либо является аксиомой, либо выводится из одного или более предыдущих высказываний этой последовательности по логическим правилам вывода, называется доказательством. Высказывание, которое можно доказать, называется теоремой.
Формально каждая теорема может быть выражена в форме импликации где посылка А называется условием теоремы, а следствие В — заключением. Теорема верна, если выражающая ее импликация тождественно истинна, т. е. является тавтологией. Тавтологии рассматривают как некоторые логически истинные схемы рассуждений. В этой связи тавтологии играют роль законов, определяющих построение правильных умозаключений. Существует бесконечное множество тавтологий. Некоторые из них легли в основу методов доказательства. Основные методы доказательств.
Метод цепочек импликаций
Метод цепочек импликаций состоит в том, что из посылки А страивается цепочка из -импликаций, последним высказыванием в которой является заключение теоремы В, т. е.
В основе этого метода лежит закон цепного высказывания или закон силлогизма
Метод от противного
Метод необходимого и достаточного
а) доказывается, что если имеет место А, то справедливо В (В необходимо для А);
б) если имеет место В, то имеет место и А (В достаточно для А).
Доказательство таким методом базируется на законе тавтологии:
Алгебра предикатов
Предикатом заданным на множествах
Рассмотрим примеры, одноместный предикат на множестве комплексных чисел, при этом, например, если истинное высказывание, а
Логические операции над предикатами
Отрицание предиката
Пусть предикат задан на множествах Предикат называется отрицанием предиката тогда и только тогда, если при одних и тех же кортежах высказывание истинно, когда ложно и наоборот. Обозначение
Конъюнкция предикатов
Пусть на множествах заданы два — местных предиката и . Конъюнкцией этих предикатов называется предикат
который истинен для одних и тех же кортежей только тогда, когда оба предиката — и и истинны.
Дизъюнкция предикатов
Импликация предикатов
Эквивалентность предикатов
Квантор существования
Квантор существования есть операция, которая предикат превращает в высказывание: «существует хотя бы один
Кванторы обладают свойствами, являющимися аналогами законов де Моргана:
Переход от или называется квантификацией или связыванием переменной . Связанная переменная фактически не является переменной, т. е. переход от или от не меняет истинности выражений. Навешивание переменной на многоместный предикат уменьшает в нем число свободных переменных и превращает его в предикат от меньшего числа переменных
Связывая обе переменные данного предиката, получим высказывания:
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Читайте также: