Как сделать площадь в математике
Например, тем, что понятие площади фигуры вводится до того, как ребенок изучит умножение.
Просто прочитайте самостоятельно выдержку из плана урока, как его запланировала Людмила Георгиевна:
Вот так вводится понятие площади. То есть Никак. Я специально показываю полностью ту часть плана урока, на которой дети впервые знакомятся с этим понятием
Вот так вводится понятие площади. То есть Никак. Я специально показываю полностью ту часть плана урока, на которой дети впервые знакомятся с этим понятием
Это второклассникам, ага.
Это никакое не утрирование, а то, что дети Массово выносят с уроков по этому учебнику - если учитель не опытный, или если учитель - преданный фанат Петерсон, готовый выполнять любой написанный ей бред, или если учитель рассказал коротенько и не заметил проблемы с пониманием.
Проверьте ребенка? Действительно ли он понимает, что площадь - это плоская территория, а не какая-то большая объемная фигня в пространстве?
Попросите его, например, показать руками, что такое площадь его пенала. Если он обводит руками весь пенал вокруг. Ну вы поняли :-)
Для объяснений нам потребуется знание таблицы умножения.
На самом деле все дети, занимающиеся по учебникам Петерсон, учат таблицу умножения летом перед 2 классом. Только почему-то не применяют при изучении площади.
Так что перед тем, как изучать площадь, вспомните с ребенком, в чем смысл умножения, повторите несколько простых примеров и обязательно умножение на 10.
Что такое площадь
Подберите практический материал. Например, 2 листа одинаковой длины и разной ширины.
В этом разделе мы познакомимся с новым математическим понятием: с площадью фигуры.
Площадь – это часть плоскости, ограниченная замкнутой ломаной или кривой линией
Ты знаешь другие понятия, которые тоже называют словом ПЛОЩАДЬ.
Например, площадь в городе - это чаще всего красивое место с клумбами, фонтаном и памятниками.
Посевная площадь - это участок земли, предназначенный для сельскохозяйственных целей.
Сравнение площадей фигур
При сравнении площади фигур, мы узнаём, больше или меньше места занимает данная фигура на плоскости.
Например, сравним площади двух фигур: треугольника и круга.
Мы видим, что площадь треугольника больше площади круга. Это видно на глаз, то есть первый способ сравнения площадей фигур: на глазок.
Сравнение площадей способом наложения
Иногда на глаз трудно определить, площадь какой фигуры больше. Давай сравним площади двух треугольников:
Совместим фигуры так, чтобы одна фигура полностью поместилась в другой.
Мы видим, что синий треугольник поместился в красном треугольнике, значит, площадь красного треугольника больше, чем площадь синего треугольника.
Сравнение площадей заданной меркой
Иногда нельзя определить, площадь какой фигуры больше способом наложения. Давай сравним площади двух фигур:
В таком случае измерять площади фигур будем заданной меркой, а потом сравним их.
Например, меркой может быть вот такой прямоугольник :
В первой фигуре поместилось 5 мерок, во второй фигуре поместилось 5 таких же мерок. Значит, площади фигур равны.
Единицы площади
В математике измерять площади фигур математики всего мира договорились одинаковыми мерками.
Квадратный сантиметр
Квадрат, сторона которого 1 см – это единица площади – квадратный сантиметр: см²
Определим площадь данных фигур:
В синей фигуре 8 см², а в красной фигуре – 7 см².
8 > 7, значит, 8 см² > 7 см² а это значит, что площадь синей фигуры больше, чем площадь красной фигуры.
Квадратный дециметр
Квадрат, сторона которого 1 дм – это единица площади – квадратный дециметр: дм²
Вычислим, сколько квадратных сантиметров содержится в 1 квадратном дециметре:
Сторона такого квадрата равна 10 см, а площадь квадрата равна произведению его сторон, то есть
Значит, 1 дм² = 100 см²
Квадратный метр
Квадрат, сторона которого 1 м – это единица площади – квадратный метр: м²
Этой единицей мы пользуемся, когда хотим узнать площадь комнаты, класса, школьного двора или бабушкиного сада.
1 м² = 100 дм²
Квадратный километр
Квадрат, сторона которого 1 км – это единица площади – квадратный километр: км²
Этой единицей мы пользуемся, когда хотим узнать площадь города или страны. Например, площадь России составляет более семнадцати миллионов квадратных километров.
1 км² = 1000000 м²
Квадратный миллиметр
Квадрат, сторона которого 1 мм – это единица площади – квадратный миллиметр: мм²
Этой единицей мы пользуемся для измерения очень маленьких площадей.
1 см² = 100 мм²
Длина и ширина клеточки школьной тетради по математике – пять миллиметров, значит там пять рядов по пять квадратных миллиметров. 5 • 5 = 25, поэтому в одной клеточке двадцать пять квадратных миллиметров.
Для черчения и измерения фигур маленькой площади удобно использовать миллиметровую бумагу.
Ар
Ар - это площадь квадрата со стороной 10 м.
Слово "ар" при числах сокращённо записывают так:
1 а 2 = 100 м 2 , поэтому ар часто называют соткой.
Гектар
Гектар - это площадь квадрата со стороной 100 м.
Слово "гектар" при числах сокращённо записывают так:
1 га, 20 га, 530 га.
Чтобы перевести площадь из квадратных метров в гектары, необходимо число квадратных метров разделить на 10000.
Ар и гектар используются при измерении земельных участков.
Формула площади круга, квадрата, трапеции, ромба, треугольника, эллипса, сегмента круга, сектора круга, параллелограмма и другие формулы площадей геометрических фигур.
Формула площади необходима для определения площадь фигуры, которая является вещественнозначной функцией, определённой на некотором классе фигур евклидовой плоскости и удовлетворяющая 4м условиям:
- Положительность — Площадь не может быть меньше нуля;
- Нормировка — квадрат со стороной единица имеет площадь 1;
- Конгруэнтность — конгруэнтные фигуры имеют равную площадь;
- Аддитивность — площадь объединения 2х фигур без общих внутренних точек равна сумме площадей этих фигур.
Результат сложения расстояний между серединами противоположных сторон выпуклого четырехугольника будут равна его полупериметру.
Сектор круга.
Площадь сектора круга равна произведению его дуги на половину радиуса.
Сегмент круга.
Чтобы получить площадь сегмента ASB, достаточно из площади сектора AOB вычесть площадь треугольника AOB.
Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.
Эллипс.
Еще один вариант как вычислить площадь эллипса – через два его радиуса.
Треугольник. Через основание и высоту.
Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.
Треугольник. Через две стороны и угол.
Площадь треугольника равна половине произведения двух его сторон, умноженного на синус угла между ними.
Треугольник. Формула Герона.
Площадь треугольника можно определить при помощи формулы Герона.
Треугольник. Через радиус вписанной окружности.
Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
Треугольник. Через радиус описанной окружности.
Площадь треугольника можно определить по радиусу описанной окружности.
Треугольник.
Площадь прямоугольного треугольника.
Треугольник.
Площадь прямоугольного треугольника через вписанную окружность.
Треугольник.
Формула Герона для прямоугольного треугольника.
Треугольник.
Площадь равнобедренного треугольника.
Трапеция.
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
Ромб. По длине стороны и высоте.
Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
Ромб. По длине стороны и углу.
Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
Ромб.
Формула площади ромба по длинам его диагоналей.
Формула площади круга через его радиус и диаметр.
Квадрат. Через его сторону.
Площадь квадрата равна квадрату длины его стороны.
Квадрат. Через его диагонали.
Площадь квадрата равна половине квадрата длины его диагонали.
Правильный многоугольник.
Для определения площади правильного многоугольника необходимо разбить его на равные треугольники, которые бы имели общую вершину в центре вписанной окружности.
Сфера.
Площадь поверхности сферы равна учетверенной площади большого круга.
Куб.
Площадь поверхности куба равна сумме площадей шести его граней.
Конус.
Боковая площадь поверхности круглого конуса равна произведению половины окружности основания (C) на образующую (l).
S = 1/2 C * l = π r l
Усеченный конус.
Боковая площадь поверхности усеченного конуса.
Цилиндр.
Площадь боковой поверхности круглого цилиндра.
Сегмент шара.
Площадь поверхности шарового сегмента равняется произведению его высоты на окружность большого круга шара.
Поверхность шарового слоя.
Кривая поверхность шарового слоя равна произведению его высоты на окружность большого круга шара.
В этом уроке рассмотрим такие понятия как площадь фигуры и формулы нахождения площади прямоугольника и квадрата.
Давайте начертим квадрат со стороной 1 см.
Площадь одного такого квадратика называют квадратным сантиметром.
один сантиметр в квадрате (1 см2).
Соответственно можем сделать вывод, что если какую – либо фигуру можно разбить на несколько таких квадратов, например, р квадратов, то ее площадь равна р см2.
Перед вами рисунок, на котором изображен прямоугольник.
Он состоит из 4 полос, каждая из которых разбита на 5 квадратов со стороной 1 см.
Т.е. весь прямоугольник состоит из 20 квадратов (мы 4 умножили на 5, получили 20).
Значит площадь такого прямоугольника равна 20 см2.
Таким образом, получили правило:
Чтобы найти площадь прямоугольника, надо умножить его длину на ширину.
Это правило можно записать в виде формулы.
Для этого обозначим площадь прямоугольника буквой S, кстати площади всех фигур принято обозначать этой буквой, длину прямоугольника буквой a, ширину – буквой b.
Получаем формулу площади прямоугольника: S равно а умножить на b(S = аb).
Теперь давайте рассмотрим следующую фигуру – квадрат, это тоже прямоугольник, но у него все стороны равны. Так как квадрат является прямоугольником, то воспользуемся формулой площади прямоугольника (S = аb). Но в случае квадрата b будет равно а, т.е. площадь равна а умножить на а, или принято записывать а в квадрате, значит: (S = а2). Получили еще одну формулу – формулу площади квадрата.
Начертим квадрат со стороной 5 см и найдем его площадь.
Площадь квадрата со стороной 5 см равна 5 в квадрате, т.е. 25 см2.
Давайте рассмотрим две фигуры:
Как узнать равны ли эти фигуры?
Это легко проверить, если выполнить наложение, т.е. одну фигуру наложить на другую. Если они полностью совместятся или совпадут, то они равные.
Таким образом, сформулируем правило:
Две фигуры называются равными, если они совпадут при наложении.
А как вы думаете, равны ли их площади и периметры? Конечно, да! Площади равных фигур равны. Периметры равных фигур равны. Но не всегда выполняется наоборот.
Например, прямоугольник со сторонами 16 и 4 см имеет площадь 64 см2 и квадрат со стороной 8 см тоже имеет площадь 64 см2, но эти фигуры не равны между собой.
Давайте построим прямоугольник ABCD со сторонами 7 см и 4 см.
Разделим его на несколько частей.
Первая часть состоит из 8 см2, вторая часть – из 16 см2, третья часть – из 4 см2.
Если сложить все эти части, получим 8 + 16 + 4 = 28. Т.е. сумма площадей всех частей также равна 28 см2.
Итак, можно сделать вывод, что площадь всей фигуры равна сумме площадей ее частей.
Таким образом, на этом уроке мы рассмотрели такие понятия как площадь фигуры и формулы нахождения площади прямоугольника и квадрата.
Читайте также: