Как сделать отражение света
На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.
Рис. 1.3. Отражение и преломление света.
Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.
Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.
Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.
Законы отражения света
Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.
На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.
Рис. 1.4. Построение Гюйгенса.
А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).
Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.
Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.
Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.
Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ .
Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.
Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.
Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.
Рис. 1.5. Диффузное отражение света.
Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.
Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.
Рис. 1.6. Зеркальное отражение света.
Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.
Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.
Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.
Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.
Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.
Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.
Рис. 1.8. Отражение от плоского зеркала.
Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.
Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.
Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.
Рис. 1.9. Изображение предмета в плоском зеркале.
В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.
Дизайнеры часто используют в своих работах отражения предметов от различных поверхностей. Поверхности бывают разные – зеркала, спокойная вода горного озера или вода, слегка подернутая рябью, стекла окон, пластик, стол из полированного дерева или мраморный пол. И отражения предмета от разных поверхностей тоже разные.
Наши глаза могут смотреть на предмет сверху или снизу, и отражение предмета будет сильно отличаться в зависимости от этого. Законы зеркальных отражений необходимо знать и внимательно соблюдать их при создании своих робот.
Основные правила построения изображения мы смутно помним из школьного курса физики. Лучи света, падающие на матовую поверхность, отражаются под различными углами, и отражения мы не видим или видим очень слабо. Отраженные лучи от гладкой полированной поверхности идут в одном направлении, и поэтому мы видим четкое зеркальное изображение.
Лучи света отражаются от зеркальной поверхности под углами, равными углам падения этих лучей. Чем ярче источник света, тем сильнее будет сила света отраженного луча.
Зеркальное изображение находится на таком же расстоянии за зеркальной плоскостью, как и точка, дающая отражение. Отражения горизонтальных линий в воде также горизонтальные, отражения вертикальных линий — вертикальные. Законы перспективы нужно учитывать и при создании отражений.
В этой статье я хочу рассмотреть возможность и способы создания разных отражений в фотошопе.
Но вначале всем, кто давно забыл школьный курс физики, предлагаю рассмотреть несколько фотографий с отражениями и проанализировать изображенное на них отражение.
На фото 1 и 2 камера расположена почти на одном уровне с поверхностью, от которой отражается предмет. Линия схода изображения предмета и его отражения - прямая или точка, если предмет имеет сферическую форму (яблоко на фото 2). Сам предмет и его отражение в этом случае имеют практически одинаковый размер. Можно ли такое отражение создать в фотошопе? Легко!
Как расположится отражение карты? Как такое отражение сделать? Для этого в фотошопе есть возможность Transformation.
А как нарисовать отражение предмета кубической формы, параллелепипеда? Рассмотрим фото 5.
Изображение кубика и его отражение сходится по ломаной линии, грани отражаются зеркально. Можно использовать идею предыдущего урока и создать отдельно отражения каждой из граней.
На фото 6 все еще сложнее. Стакан цилиндрической формы и линия соприкосновения изображения и его отражения - кривая. Можно ли такое отражение сделать в фотошопе? Не так просто, как в первом случае, но можно!
А что насчет апельсина? Глазом мы видим срез апельсина и часть корки, а от поверхности отражается его наружная часть – оранжевая корка.
Рассмотрим еще фото 7, чашка с кофе. Уровень взгляда выше самого предмета. В данном случае от полированной поверхности отражается та часть предмета, которой вообще не видно на самом изображении, а именно нижняя часть чашки. При перспективе сверху вниз, изображение уменьшается книзу и отражение тоже. Вот только верх и низ у изображения и зеркального отражения разные!
Что в этом случае делать? Как сделать отражение? Да никак! На самом изображении нет того, что должно быть в отражении. Можно только нарисовать то, что вам подскажет ваше воображение с помощью обычных инструментов рисования.
Простой пример: вы используете в работе изображение стола, снятого камерой, расположенной выше поверхности столешницы, и хотите сделать в фотошопе его отражение от пола. Кажется все просто – скопировать, отразить, ножку к ножке придвинуть и радоваться? Но от полированного пола должна отразится внутренняя часть стола, то как там под столом ножки винтами крепятся к столешнице! Именно то, чего вообще нет на вашем фото! К сожалению, здесь программа бессильна.
Если очень нужно сделать что-то такое, можно создать отдельно отражение всех ножек стола, размытое и полупрозрачное, разместить их как положено, учитывая перспективу, а затем нарисовать полупрозрачное нечто, имитирующее отражение столешницы снизу.
Фотошоп это всего лишь программа, которая хранит определенный набор пикселей и не понимает, какие из них принадлежат предмету, а какие отражающей плоскости. Программа не знает, на каком уровне расположены ваши глаза при съемке или рисовании всей композиции, не знает, на каком расстоянии и под каким углом находится предмет по отношению к отражающей его плоскости, не может определить, по какому алгоритму строить это отражение, а потому и не может создать его автоматически.
Фотографируйте предметы с отражениями, рисуйте их или используйте программы 3D-графики.
ТЕНЬ ПЛАМЕНИ
Осветите горящую свечу мощной электрической лампой. На экране из белого листа бумаги появится не только тень свечи, но и тень ее пламени
На первый взгляд кажется странным, что сам источник света может иметь собственную тень. Объясняется это тем, что в пламени свечи есть непрозрачные раскаленные частицы и что очень велика разница в яркости пламени свечи и освещающего ее мощного источника света. Этот опыт очень хорошо наблюдать, когда свечу освещают яркие лучи Солнца.
ЗАКОН ОТРАЖЕНИЯ СВЕТА
Для этого опыта нам понадобятся: небольшое прямоугольное зеркало и два длинных карандаша.
Положите на стол лист бумаги и проведите на нем прямую линию. Поставьте на бумагу перпендикулярно проведенной линии зеркало. Чтобы зеркало не упало, позади него положите книги.
Для проверки строгой перпендикулярности нарисованной на бумаге линии к зеркалу проследите, чтобы
и эта линия и ее отражение в зеркале были прямолинейными, без излома у поверхности зеркала. Это мы с вами создали перпендикуляр.
В роли световых лучей в нашем опыте выступят карандаши. Положите карандаши на листок бумаги по разные стороны от начерченной линии концами друг к другу и к той точке, где линия упирается в зеркало.
Теперь проследите, чтобы отражения карандашей в зеркале и карандаши, лежащие перед зеркалом, образовывали прямые линии, без излома. Один из карандашей будет играть роль падающего луча, другой — луча отраженного. Углы между карандашами и начерченным перпендикуляром получаются равными друг другу.
Если теперь вы повернете один из карандашей (например, увеличивая угол падения), то обязательно нужно повернуть и второй карандаш, чтобы не было излома между первым карандашом и его продолжением в зеркале.
Всякий раз, изменяя угол между одним карандашом и перпендикуляром, нужно проделывать это и с другим карандашом, чтобы не нарушить прямолинейности светового луча, который карандаш изображает.
ЗЕРКАЛЬНОЕ ОТРАЖЕНИЕ
Бумага бывает разных сортов и отличается своей гладкостью. Но даже очень гладкая бумага не способна отражать, как зеркало, она совсем не похожа на зеркало. Если такую гладкую бумагу рассматривать через увеличительное стекло, то сразу можно увидеть ее волокнистое строение, разглядеть впадинки и бугорки на ее поверхности. Свет, падающий на бумагу, отражается и бугорками, и впадинками. Эта беспорядочность отражений создает рассеянный свет.
Однако и бумагу можно заставить отражать световые лучи по-другому, чтобы не получался рассеянный свет. Правда, даже очень гладкой бумаге далеко до настоящего зеркала, но все-таки и от нее можно добиться некоторой зеркальности.
Возьмите лист очень гладкой бумаги и, прислонив его край к переносице, повернитесь к окну (этот опыт надо делать в яркий, солнечный день). Ваш взгляд должен скользить по бумаге. Вы увидите на ней очень бледное отражение неба, смутные силуэты деревьев, домов. И чем меньше будет угол между направлением взгляда и листом бумаги, тем яснее будет отражение. Подобным образом можно получить на бумаге зеркальное отражение свечи или электрической лампочки.
Чем же объяснить, что на бумаге, хоть и плохо, все-таки можно видеть отражение?
Когда вы смотрите вдоль листа, все бугорки бумажной поверхности загораживают впадинки и превращаются как бы в одну сплошную поверхность. Беспорядочных лучей от впадин мы уже не видим, они нам теперь не мешают видеть то, что отражают бугорки.
ОТРАЖЕНИЕ ПАРАЛЛЕЛЬНЫХ ЛУЧЕЙ
Возьмите небольшое прямоугольное зеркало и поставьте его поперек светлых полосок. На бумаге появятся полоски отраженных лучей.
Поверните зеркало, чтобы лучи падали на него под некоторым углом. Отраженные лучи тоже повернутся. Если мысленно провести перпендикуляр к зеркалу в месте падения какого-нибудь луча, то угол между этим перпендикуляром и падающим лучом будет равен углу отраженного луча. Как бы вы ни изменяли угол падения лучей на отражающую поверхность, как бы ни поворачивали зеркало, всегда отраженные лучи будут выходить под таким же углом.
Если нет маленького зеркала, его можно заменить блестящей стальной линейкой или лезвием безопасной бритвы. Результат будет несколько хуже, чем с зеркалом, но все-таки опыт провести можно.
С бритвой или линейкой возможно проделать еще и такие опыты. Согните линейку или бритву и поставьте на пути параллельных лучей. Если лучи попадут на вогнутую поверхность, то они, отразившись, соберутся в одной точке.
ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ
Интересное явление происходит с лучом света, который выходит из более плотной среды в менее плотную, например, из воды в воздух. Лучу света не всегда удается это сделать. Все зависит от того, под каким углом он пытается выйти из воды. Здесь угол - это угол, который луч образует с перпендикуляром к поверхности, через которую он хочет пройти. Если этот угол равен нулю, то он свободно выходит наружу. Так, если положить на дно чашки пуговицу и смотреть на нее точно сверху, то пуговица хорошо видна.
Если же увеличивать угол, то может наступить момент, когда нам будет казаться, что предмет исчез. В этот момент лучи полностью отразятся от поверхности, уйдут в глубину и до наших глаз не дойдут. Такое явление называется полным внутренним отражением или полным отражением.
Опыт 1
Сделайте из пластилина шарик диаметром 10— 12 мм и воткните в него спичку. Из плотной бумаги или картона вырежьте кружок диаметром 65 мм. Возьмите глубокую тарелку и натяните на ней параллельно диаметру две нитки на расстоянии трех сантиметров друг от друга. Концы ниток закрепите на краях тарелки пластилином или лейкопластырем.
Затем, проткнув шилом кружок в самом центре, вставьте в отверстие спичку с шариком. Расстояние между шариком и кружком сделайте около двух миллиметров. Положите кружок шариком вниз на натянутые нитки в центре тарелки. Если посмотреть сбоку, шарик должен быть виден. Теперь налейте в тарелку воду до самого кружка. Шарик исчез. Световые лучи с его изображением уже не дошли до наших глаз. Они, отразившись от внутренней поверхности воды, ушли в глубь тарелки. Произошло полное отражение.
Опыт 2
Опыт 3
Налейте в стакан воду и погрузите в нее стеклянную пипетку. Если ее рассматривать сверху, немного наклонив в воде, чтобы хорошо была видна ее стеклянная часть, она будет так сильно отражать световые лучи, что станет словно зеркальной, будто сделана из серебра. Но стоит нажать на резинку пальцами и набрать в пипетку воду, как сразу же иллюзия исчезнет, и мы увидим только стеклянную пипетку — без зеркального наряда. Зеркальной ее делала поверхность воды, соприкасавшаяся со стеклом, за которым был воздух. От этой границы между водой и воздухом (стекло в данном случае не учитывается) отражались полностью световые лучи и создавали впечатление зеркальности. Когда же пипетка наполнилась водой, воздух в ней исчез, полное внутреннее отражение лучей прекратилось, потому что они просто стали проходить в воду, заполнившую пипетку.
Обратите внимание на пузырьки воздуха, которые иногда бывают в воде на внутренней стороне стакана. Блеск этих пузырьков тоже результат полного внутреннего отражения света от границы воды и воздуха в пузырьке.
ХОД СВЕТОВЫХ ЛУЧЕЙ В СВЕТОВОДЕ
Хотя световые лучи распространяются от источника света по прямым линиям, можно заставить их идти и по кривому пути. Сейчас изготовляют тончайшие световоды из стекла, по которым световые лучи проходят большие расстояния с различными поворотами.
Простейший световод можно сделать довольно просто. Это будет струя воды. Свет, идя по такому световоду, встретив поворот, отражается от внутренней поверхности струи, не может вырваться наружу и идет дальше внутри струи до самого ее конца. Частично вода рассеивает небольшую долю света, и поэтому в темноте мы все-таки увидим слабо светящуюся струю. Если вода слегка забелена краской, светиться струя будет сильнее.
Возьмите шарик для настольного тенниса и проделайте в нем три отверстия: для крана, для короткой резиновой трубки и против этого отверстия третье — для лампочки от карманного фонаря. Лампочку вставьте внутрь шарика цоколем наружу и прикрепите к нему два провода, которые потом присоедините к батарейке от карманного фонаря. Шарик укрепите на кране с помощью изоляционной ленты. Все места соединений промажьте пластилином. Затем обмотайте шарик темной материей.
Откройте кран, но не очень сильно. Струя воды, вытекающая из трубки, должна, изгибаясь, падать недалеко от крана. Свет погасите. Присоедините провода к батарейке. Лучи света от лампочки пройдут через воду в отверстие, из которого вытекает вода. Свет пойдет по струе. Вы увидите лишь ее слабое свечение. Основной поток света идет по струе, не вырывается из нее даже там, где она изгибается.
ОПЫТ С ЛОЖКОЙ
Возьмите блестящую ложку. Если она хорошо отполирована, то даже кажется немножко зеркальной, что-то отражает. Закоптите ее над пламенем свечи, да почернее. Теперь ложка ничего уже не отражает. Копоть поглощает все лучи.
Ну, а теперь опустите закопченную ложку в стакан с водой. Смотри: заблестела, как серебро! Куда же копоть-то девалась? Отмылась, что ли? Вынимаешь ложку — черна по-прежнему.
Чем чернее, тем светлее!
ПРЕЛОМЛЕНИЕ СВЕТА
Вы знаете, что луч света прямолинеен. Вспомните хотя бы луч, пробившийся сквозь щелку в ставне или в занавесе. Золотой луч, полный кружащихся пылинок!
Но… физики привыкли все проверять на опыте. Опыт со ставнями, конечно, очень нагляден. А что вы скажите об опыте с гривенником в чашке? Не знаете, этого опыта? Сейчас мы с вами его сделаем. Положите гривенник в пустую чашку и присядьте так, чтобы он перестал быть виден. Лучи от гривенника шли бы прямо в глаз, да край чашки загородил им дорогу. Но я сейчас устрою так, что вы снова увидите гривенник.
Вот я наливаю в чашку воду… Осторожно, потихоньку, чтобы гривенник не сдвинулся… Больше, больше…
Можно в ту же чашку или в стакан наклонно опустить чайную ложечку. Смотрите, сломалась! Конец, погруженный в воду, переломился вверх! Вынимаем ложечку — она и целая, и прямая. Значит, лучи действительно ломаются!
Источники: Ф. Рабиза "Опыты без приборов", "Здравствуй физика" Л.Гальперштейн
Включите фонарь в затемненной комнате. Пучок света от фонаря вы увидите особенно отчетливо, если в воздухе есть немного пыли или дыма. Края пучка ограничены прямыми линиями. В фонаре без линз ширина пучка и степень его расширения зависят от кривизны рефлектора, отражающего свет лампочки фонаря вперед.
Поставьте поперек светового пучка кусок стекла. Что происходит? Почему на этот раз свет не отрезан? Впрочем, внимательно оглядев комнату, вы заметите свет, отраженный от стекла; измените наклон стекла, и вы увидите: в зависимости от наклона пятна отраженного света перемещаются по стенам, полу, потолку. Но отраженный свет гораздо слабее, чем проходящий сквозь стекло.
Вы увидели, что такое частичное отражение света. Как показано на рис. 1. 1,
Рис. 1. 1. Отражение света. Падающий луч (1) отскакивает от поверхности, превращаясь тем самым в луч отраженный (2). Если луч падает перпендикулярно поверхности от N1 и N2, то и отраженный луч пойдет по тому же направлению, только в противоположную сторону — от N2 к N1. Насколько отличается от перпендикулярного направление падающего луча, настолько же отклонится от перпендикуляра и отраженный луч, идущий в противоположном направлении; углы X и Y всегда равны.
часть пучка света отбрасывается от поверхности тел, другая — проходит насквозь.
А теперь поставьте в пучок света зеркало. Поверните его так, чтобы пятно света оказалось на потолке. Это пятно ярче того, что было отражено простым стеклом. Здесь происходит не частичное, а полное отражение света; сквозь зеркало свет не проходит. Запомните — любая блестящая поверхность отражает свет. Это относится и к линзам, и к гладкой поверхности человеческого глаза.
Экспонат для выставки
Рис. 1. 2. Щели в передней стенке ящика позволяют получить лучевые тени для демонстрации принципов отражения света.
Вы можете менять узоры, устанавливая внутри коробки перегородку непрозрачную,— либо отражающую свет частично, или полностью. Легко заметить, как меняется лучевой узор, когда вы поворачиваете перегородку, варьируя угол падения и угол отражения света.
Существует множество способов выполнения этого опыта. Постарайтесь использовать несколько источников света; можно также окрасить дно коробки не в белый, а в другие цвета.
↑ ОПЫТ 2. ОТРАЖЕНИЕ СВЕТА ГЛАЗОМ ЧЕЛОВЕКА
Оборудование: картонные диски — черно-белые и цветные, лупа
Пусть ваш партнер смотрит прямо перед собой, а вы смотрите на его глаз сбоку. Заметьте, что передняя часть глаза — роговица — состоит из прозрачной ткани и выгнута вперед. Она работает как мощная линза, пропускающая и фокусирующая свет.
Сделайте черно-белую мишень — диск диаметром около 12,5 сантиметра (рис. 2.1).
В центре прорежьте дырочку диаметром 3—5 миллиметров. Прикрепите ручку. Смотрите прямо через отверстие в диске на глаз вашего партнера на расстоянии примерно 25 сантиметров (рис. 2.2).
Рис. 2. 2. Экспериментатор располагается в 20—30 сантиметрах от партнера, глаз которого он рассматривает через отверстие в центре диска.
Мишень должна быть хорошо освещена. Следите за отражением мишени на роговице глаза — когда вы перемещаете мишень, движется и ее изображение на роговице.
Укажите кончиком пальца на какое-либо место в верхнем краю диска, и пусть ваш партнер смотрит на это место. Как изменилась теперь форма отражения мишени на роговице? Попробуйте то же самое, указывая пальцем на правую, левую половину диска, нижнюю часть. Вы убедитесь, что роговица на самом деле не шаровидна, а слегка конусообразна. Проверьте теперь, как изменится изображение диска на роговице, если мишень будет цветной. Как выглядит изображение при разных цветах мишени?
Сейчас вы работаете с роговицей не как с линзой, а как с зеркалом. Изображение мишени видно не очень ясно именно потому, что часть света проходит сквозь роговицу. Главное назначение роговицы — преломлять свет и формировать изображение внутри глаза. Светопреломляющая сила глаза примерно на три четверти зависит от роговицы. Как любая другая линза, роговица не только преломляет, но и отражает свет. Возьмите в одну руку лупу и посмотрите на нее, приставив к глазу мишень. Если вы правильно подберете расстояние, вы увидите на поверхности лупы отражение мишени.
Экспонат для выставки
Изготовьте различные мишени и сделайте модель роговицы, глядя на которую посетители смогут увидеть отражение мишеней. Для демонстрации отраженных изображений используйте самые разнообразные изогнутые поверхности — металлические или мраморные шарики, лупы, стекла очков — любые блестящие поверхности.
↑ ОПЫТ 3. ПРЕЛОМЛЕНИЕ СВЕТА
Оборудование: лучевой ящик, источник света, лупа, небольшой картонный экран
Прежде чем приступить к этому опыту, убедитесь еще раз в том, что вы хорошо понимаете законы преломления света.
Используйте ту же коробку, что и в предыдущем опыте. Можно повернуть ее окошко к яркому лучу солнечного света — получится великолепный лучевой узор. Обратите внимание на то, что лучевые тени при очень далеком источнике света (а Солнце практически можно считать бесконечно удаленным источником) параллельны.
Поставьте перед окошком большую лупу (рис. 3.1).
Рис. 3. 1. Если на лупу падает параллельный пучок лучей света, то расстояние от лупы до той точки, где прошедшие сквозь нее лучи собираются воедино, и есть фокусное расстояние лупы.
Подберите такое расстояние между лупой и окошком, чтобы получился хороший лучевой узор. Итак, что же получается? Почему образуется такой лучевой узор?
Вы видите, что лучи света пересекаются в определенной точке — фокусной точке линзы (лупы). Ее удаленность от линзы зависит от оптической силы последней. Можно использовать не Солнце, а обычный источник, но тогда лучи света не будут вполне параллельными (рис. 3.2).
Рис. 3. 2. Когда опыт ставится в затемненной комнате, лучевые узоры хорошо видны на задней стенке ящика, если свет от какого-либо источника проходит сквозь лупу и щели в передней стенке. На рисунке эти узоры не видны, так как при фотографировании комната была освещена яркой вспышкой.
Изучите получше вашу лупу. Вы сразу видите, что в середине она толще, чем по краям. Это собирательная линза. Вспомните, что сделала она с лучами света: преломила их так, что лучи сблизились, конвергировали к одной точке — фокусу. Как вы думаете, почему это произошло?
Если у вас есть линзы разной силы, поработайте с каждой из них. Возможно, вы сумеете найти линзу рассеивающую, дивергирующего действия. Лучше если это будут достаточно сильные линзы. И отверстие в коробке вам придется уменьшить, потому что ваши линзы в большинстве будут, вероятно, небольшого диаметра.
Лупа, как и любая собирательная линза, дает истинное изображение. Приблизьте линзу к отверстию — и на листе бумаги, который служит экраном, вы получите изображение отдаленных предметов. Прямое это изображение или перевернутое? Объясните, почему.
Установите источник света, большую лупу и экран, как показано на рис. 3. 3.
Рис. 3. 3. В затемненной комнате подберите такое расстояние между источником света, лупой и экраном, при котором на экране получается наиболее резкое изображение.
Вырежьте из картона звездочку и прикрепите ее к источнику света.
Перемещая лупу, вы узнаете многое о фокусировке и преломлении света. Используйте самые различные предметы. Что происходит, если предмет приблизить к лупе? Надо ли при этом приближать или отодвигать экран, чтобы получить четкое изображение? А если у вас есть лупы разной силы, то какую надо взять лупу, чтобы получить четкое изображение более близкого к лупе предмета (при постоянном расстоянии от лупы до экрана), сильнее или слабее? Что вы узнали о формировании изображений, работая с этой установкой?
Экспонат для выставки
↑ ОПЫТ 4. ПРЕЛОМЛЕНИЕ СВЕТА В ГЛАЗУ ЧЕЛОВЕКА
Оборудование: источник света, лупа, картонный экран, маска для линзы
Проекционный фонарь — прекрасный источник света для некоторых опытов. Установите лупу и экран, как на рис. 4. 1.
Рис. 4. 1. Два отверстия в картонной маске, закрывающей лупу, следует поместить так, чтобы расстояние между ними было меньше диаметра светового пятна, проектируемого на экран. Это пятно будет тем больше, чем дальше экран от проектора.
Вместо проекционного можно, конечно, использовать и хороший карманный фонарь. Вырежьте кусок картона того же размера, что и лупа. Эту маску надо либо прикрепить к лупе лентой, либо просто придерживать возле нее, когда это потребуется.
Сначала прорежьте в картоне два отверстия (очень удобен дырокол для подшивки бумаг) так, чтобы оба оказались в пределах светового круга, проектируемого через лупу на экран. Вы получите перфорированную маску. Сначала отложите маску и найдите положение лупы и экрана, при котором изображение источника света будет не в фокусе.
А теперь приложите к лупе перфорированную маску. Что получается на экране? Два крошечных изображения расположены далеко друг от друга, потому что система не сфокусирована. Передвиньте экран так, чтобы изображения обоих отверстий полностью совпали.
Помните — это всего лишь аналогия. Для того чтобы лучше моделировать условия преломления света в глазу, надо проделать еще ряд действий с вашей установкой.
Что произойдет, если, сохраняя неизменным положение объекта и экрана, перемещать лупу? Что вы узнали об изображениях и оптических системах при такой постановке опыта? Какому элементу оптической системы глаза соответствует подвижная лупа?
В квадратном куске плотного черного картона (сторона квадрата около 5 сантиметров) тонкой булавкой сделайте две дырочки на расстоянии примерно 2,5 миллиметра одна от другой — расстояние между дальними краями дырочек должно быть меньше, чем диаметр вашего зрачка. Не огорчайтесь если с первой попытки у вас это не получится. Обязательно проследите, чтобы края дырочек были четкими и правильными.
На куске белого картона нарисуйте прямую линию и повесьте его на стену так, чтобы линия была горизонтальной на уровне ваших глаз. Станьте примерно в 120 сантиметрах от стены и смотрите на линию одним глазом через обе дырочки в черном картоне, расположив их вертикально. Если ваш глаз точно сфокусирован к расстоянию, с которого вы ведете наблюдение, вы увидите одну линию, если нет, то две.
Булавку держите примерно в 30 сантиметрах перед глазом, как показано на рис. 4.2;
Рис. 4. 2. Полоску картона с двумя булавочными отверстиями держите как можно ближе к глазу (второй глаз закрыт).
По тому, как двоится отдаленный предмет, можно определить фокусировку глаз к данному расстоянию. Прикройте одну из дырочек и обратите внимание, какое из двух изображений пропадет. Это не так-то просто. Надо помнить, что изображение предмета на сетчатке глаза перевернуто и нижней части предмета соответствует верхняя (на сетчатке) точка изображения. Проверьте это на установке объект — лупа — экран, собранной вами ранее.
Экспонат для выставки
С помощью лупы и маски с двумя отверстиями можно очень эффектно демонстрировать некоторые оптические явления, приложимые и к оптике глаза,— главным образом соотношение объекта и его изображения. Хорошо дополнить экспонат рисунками, на которых показаны результаты ваших опытов с описанными приборами.
↑ ОПЫТ 5. ДИАФРАГМЫ
Оборудование: источник света, фигурные маски, лупа, картонный экран, диафрагмы
Установите источник света, лупу и картонный экран, как показано на рис. 5. 1.
Прикрепите маску — черную фигуру — к источнику света так, чтобы она оказалась в центре светового пучка.
Работайте в затемненной комнате. Расстояние между источником, лупой и экраном подберите таким образом, чтобы изображение фигуры на экране было как можно более четким. Внимательно изучите полученное изображение. Четкие ли у него края? Вместо простой фигуры поставьте фестончатую. Различаете ли вы все детали изображения? Обратите внимание на его яркость в центре и по краям.
Прорежьте в картоне несколько отверстий разных размеров: с 5-, 2-, 1-копеечную монету и с булавочную головку; кусок картона с одним из указанных отверстий будет служить диафрагмой. Ставьте перед лупой разные диафрагмы и смотрите, как меняется изображение.
Направьте отверстие на пламя свечи (рис. 5. 2).
Рис. 5. 2. В совершенно темной комнате рассмотрите изображение пламени свечи, которое получится в вашей камере-обскуре.
Подберите расстояние до свечи так, чтобы получить изображение пламени на бумаге. Разберитесь, почему изображение перевернуто и как вообще получается изображение без линзы. Это простое устройство— камера-обскура. Теперь вы познакомились с очень важным фактором: диафрагмы улучшают фокусировку. Это верно для всякой оптической системы, в том числе и для оптики глаза.
Вы можете увеличить четкость собственного зрения, используя диафрагму с булавочным отверстием; это особенно заметно, если без диафрагмы ваш глаз видит предмет нечетко. Проверьте себя и членов вашей семьи; те из них, кто при чтении пользуется очками, пусть попробуют читать без очков, глядя через булавочное отверстие.
Два картонных кружка с булавочными отверстиями — ваши картонные очки; в каждом кружке проделайте по нескольку отверстий. Попробуйте носить такие очки на улице. Посмотрите вдаль, приложив к глазу лупу, — вы все видите нечетко; теперь посмотрите через ту же лупу, приложив ее снаружи к вашим дырчатым картонным очкам.
Экспонат для выставки
Можно подготовить установку со сменными диафрагмами и демонстрировать влияние размера отверстия на качество изображения. Легко организовать опыт так, чтобы его наблюдала целая группа людей одновременно и зрители могли самостоятельно менять диафрагму.
Читайте также: