Как сделать описанный шестиугольник
Выпуклый многоугольник называется правильным, если все его стороны равны и все его углы равны.
Замечание
Т.к. сумма всех углов \(n\) –угольника равна \(180^\circ(n-2)\) , то каждый угол правильного \(n\) –угольника равен \[\alpha_n=\dfracn \cdot 180^\circ\]
Пример
Каждый угол правильного четырехугольника (т.е. квадрата) равен \(\dfrac 4\cdot 180^\circ=90^\circ\) ;
каждый угол правильного шестиугольника равен \(\dfrac6\cdot 180^\circ=120^\circ\) .
Теоремы
1. Около любого правильного многоугольника можно описать окружность, и притом только одну.
2. В любой правильный многоугольник можно вписать окружность, и притом только одну.
Следствия
1. Окружность, вписанная в правильный многоугольник, касается всех его сторон в серединах.
2. Центры вписанной и описанной окружности у правильного многоугольника совпадают.
Теорема
Если \(a\) – сторона правильного \(n\) –угольника, \(R\) и \(r\) – радиусы описанной и вписанной окружностей соответственно, то верны следующие формулы: \[\begin S&=\dfrac n2ar\\ a&=2R\cdot \sin\dfracn\\ r&=R\cdot \cos\dfracn \end\]
Свойства правильного шестиугольника
1. Сторона равна радиусу описанной окружности: \(a=R\) .
2. Радиус описанной окружности является биссектрисой угла правильного шестиугольника.
3. Все углы правильного шестиугольника равны \(120^\circ\) .
4. Площадь правильного шестиугольника со стороной \(a\) равна \(\dfrac>a^2\) .
5. Диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу \(r\) вписанной в правильный шестиугольник окружности.
6. Инвариантен относительно поворота плоскости на угол, кратный \(60^\circ\) относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями).
Замечание
В общем случае правильный \(n\) -угольник инвариантен относительно поворота на угол \(\dfrac\) .
Этот метод построения далеко не новый, впервые он был предложен Евклидом в IV веке. Но у него есть весомое преимущество, которое заключается в том, что с его помощью можно строить фигуры большого размера. Для этого циркуль нужно заменить длинной ниткой, к концу которой привязан карандаш.
На бумаге отметьте карандашом точку, в которой будет центр окружности. Установите острие циркуля в эту точку и нарисуйте любую окружность произвольного диаметра с центром в этой точке.
Используя линейку и карандаш, проведите прямую линию через точку центра окружности. Линия будет пересекать окружность в двух диаметрально противоположных точках.
Пересечение прямой и окружности отметьте карандашом. Это точка будет центром второй окружности.
Установите острую сторону циркуля в эту точку и нарисуйте вторую окружность, длина радиуса которой равна длине радиуса первой окружности.
Полностью окружность вырисовывать не обязательно, достаточно получить две точки пересечения окружностей.
Таким образом, у вас получится четыре точки. Отметьте их карандашом.
Проведите прямую линию через центр первой окружности и верхнюю точку пересечения обеих окружностей.
Аналогично, начертите прямую линию через нижнюю точку пересечения окружностей.
Получилось шесть точек, каждая из которых будет вершиной углов шестиугольника.
Соедините точки между собой фломастером. Ластиком сотрите нарисованные простым карандашом линии.
Знаете ли вы, как выглядит правильный шестиугольник?
Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.
Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.
Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.
Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?
Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.
Мы знаем, что площадь правильного треугольника: .
Тогда площадь правильного шестиугольника — в шесть раз больше.
, где — сторона правильного шестиугольника.
Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.
Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне.
Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти.
Он равен .
Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.
Ты нашел то, что искал? Поделись с друзьями!
. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной .
Радиус такой окружности равен .
. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?
Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.
Правильный описанный треугольник строят следующим образом (рисунок 38). Из центра заданной окружности радиуса R1 проводят окружность радиусом R2 = 2R1 и делят ее на три равные части. Точки деления А, В, С являются вершинами правильного треугольника, описанного около окружности радиуса R1.
Правильный описанный четырехугольник (квадрат) можно построить с помощью циркуля и линейки (рисунок 39). В заданной окружности проводят два взаимно перпендикулярных диаметра. Приняв точки пересечения диаметров с окружностью за центры, радиусом окружности R описывают дуги до взаимного их пересечения в точках А, В, С,D. Точки A, B, C, D и являются вершинами квадрата, описанного около данной окружности.
Для построения правильного описанного шестиугольника необходимо вначале построить вершины описанного квадрата указанным выше способом (рисунок 40, а). Одновременно с определением вершин квадрата заданную окружность радиуса R делят на шесть равных частей в точках 1, 2, 3, 4, 5, 6 и проводят вертикальные стороны квадрата. Проведя через точки деления окружности 2–5 и 3–6 прямые до пересечения их с вертикальными сторонами квадрата (рисунок 40, б), получают вершины А, В, D, Е описанного правильного шестиугольника.
Остальные вершины C и F определяют с помощью дуги окружности радиуса OA, которая проводится до пересечения ее с продолжением вертикального диаметра заданной окружности.
3 СОПРЯЖЕНИЯ
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Определение длины стороны правильного многоугольника по радиусу вписанной окружности
Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.
Правильные многоугольники и окружность. Здравствуйте, Дорогие друзья! Во многих задачах в курсе геометрии, в том числе и в составе ЕГЭ имеется много заданий связанных с понятием окружности вписанной в правильный многоугольник и описанной около него. Если конкретней, то в данном случае мы рассмотрим правильный треугольник, также квадрат и правильный шестиугольник. Именно с этими правильными многоугольниками связаны условия заданий на экзамене. Обычно в ходе решения таких задач возникает необходимость выразить:
1. Сторону правильного треугольника через радиус вписанной или описанной окружности.
2. Сторону квадрата через радиус вписанной окружности или описанной окружности.
3. Сторону правильного шестиугольника через радиус вписанной или описанной окружности.
4. Радиус вписанной в правильный многоугольник окружности через радиус описанной около него окружности и наоборот.
На сайте рассмотрены (и в будущем будут рассматриваться) задачи , в которых эти формулы используются. При решении подробно не описывается как они выводятся. Просто говорится, например, что сторона правильного треугольника соотносится с радиусом вписанной в него окружности как:
У многих возникают вопросы по этому поводу: Как? Почему? В этой статье мы выведем все указанные соотношения и в будущем при решении задач, если потребуется, просто буду давать ссылку на эту статью.
Что нужно всегда помнить и понимать?
Центр правильного многоугольника совпадает с центром вписанной о описанной около него окружности. Итак, приступим!
Правильный треугольник, вписанная и описанная окружность.
Пусть а – это его сторона, радиус описанной окружности равен R, а радиус вписанной окружности равен r.
Стороны правильного треугольника и вписанная в него окружность имеют общие точки (точки касания), эти точки делят стороны треугольника пополам. Радиус описанной окружности, проведённый к вершине треугольника является биссектрисой, то есть делит угол при этой вершине, равный 60 градусам, пополам. Рассмотрим прямоугольный треугольник (выделен жёлтым). По определению тангенса: Получаем, что: По определению косинуса: Получаем, что: Можем записать соотношение радиусов:
Квадрат, вписанная и описанная около него окружность.
Пусть а – это сторона квадрата, радиус описанной окружности равен R, а радиус вписанной окружности равен r.
Стороны квадрата и вписанная в него окружность имеют общие точки (точки касания), эти точки делят стороны квадрата пополам.
Радиус описанной окружности, проведённый к вершине квадрата является биссектрисой, то есть делит угол квадрата пополам.
Рассмотрим прямоугольный треугольник (выделен жёлтым). На основании вышеизложенного можно сделать вывод о том, что:
По определению косинуса: Получаем, что: *Можно было воспользоваться также теоремой Пифагора. Запишем соотношение радиусов:
Правильный шестиугольник. Вписанная и описанная окружность.
Стороны правильного шестиугольника и вписанная окружность имеют общие точки (точки касания), эти точки делят стороны данного шестиугольника пополам.
Радиус описанной окружности, проведённый к вершине шестиугольника является биссектрисой, то есть делит угол правильного шестиугольника равный 120 градусам пополам. Подробнее о правильном шестиугольнике и описанной около него окружности можете посмотреть информацию в этой статье .
Рассмотрим прямоугольный треугольник (выделен жёлтым). По определению тангенса: Получаем, что:
Тот факт, что сторона правильного шестиугольника равна радиусу описанной окружности известен практически всем школьникам изучившим соответствующий материал по планиметрии:
Если интересно посмотрите как это можно вывести. По определению косинуса в прямоугольном треугольнике: Получаем, что: Можем записать соотношение радиусов: Вот и всё.
Конечно же, учить и запоминать данные формулы не нужно. В ходе решения вы всегда сможете их также вывести используя свойства правильных многоугольников, определения тангенса и косинуса , теорему Пифагора.
Я решил изложить это в отдельной статье только для того, чтобы у вас не возникали вопросы при решении и изучении соответствующих заданий на блоге и вы всегда могли бы посмотреть откуда взялась формула. Везде, где потребуется данная информация я буду размещать ссылку на эту статью.
Читайте также: