Как сделать окружность в аксонометрии
В этом видеоуроке мы рассмотрим 1 способ пострения окружности (круга) в прямоугольной изометрии.
Довольно часто при вычерчиваннии детали в прямоугольной изометрии, мы встречаем окружности и различные сопряжения фигур. Окружность в прямоугольной измоетрии во всех трех плоскостях прекции представляет собой одинаковые по форме эллипсы, поэтому взять и просто начертить окружность (круг) без искажения в прямоугольной изометри не получится. Чтобы как то упростить построение эллипса в прямоугольной измоетрии, его заменяют овалом.
Рассмотрим, как в изометрической проекции изображаются окружности. Для этого изобразим куб с вписанными в его грани окружностями (рис. 3.16). Окружности, расположенные соответственно в плоскостях, перпендикулярных осям х, у, z, изображаются в изометрии в виде трех одинаковых эллипсов.
Рис. 3.16. Изометрические проекции окружностей, вписанных в грани куба
Для упрощения работы эллипсы заменяют овалами, очерчиваемыми дугами окружностей, их строят так (рис. 3.17). Вычерчивают ромб, в который должен вписываться овал, изображающий данную окружность в изометрической проекции. Для этого на осях откладывают от точки О в четырех направлениях отрезки, равные радиусу изображаемой окружности (рис. 3.17, а). Через полученные точки a, b, с, d проводят прямые, образующие ромб. Его стороны равны диаметру изображаемой окружности.
Рис. 3.17. Построение овала
Из вершин тупых углов (точек А и В) описывают между точками а и b, а также с и d дуги радиусом R, равным длине прямых Ва или Вb (рис. 3.17, б).
Точки С и Д лежащие на пересечении диагонали ромба с прямыми Ва и Вb, являются центрами малых дуг, сопрягающих большие.
Малые дуги описывают радиусом R, равным отрезку Са (Db).
Рассмотрим построение изометрической проекции детали, два вида которой даны на рис. 3.18, а.
Построение выполняют в следующем порядке. Сначала вычерчивают исходную форму детали – угольник. Затем строят овалы, изображающие дугу (рис. 3.18, б) и окружности (рис. 3.18, в).
Рис. 3.18. Последовательность построения изометрической проекции детали
Для этого на вертикально расположенной плоскости находят точку О, через которую проводят изометрические оси х и z. Таким построением получают ромб, в который вписана половина овала (рис. 3.18, б). Овалы на параллельно расположенных плоскостях строят перенесением центров дуг на отрезок, равный расстоянию между данными плоскостями. Двойными кружочками на рис. 3.18 показаны центры этих дуг.
На тех же осях х и z строят ромб со стороной, равной диаметру окружности d. В ромб вписывают овал (рис. 3.18, в).
Находят центр окружности на горизонтально расположенной грани, проводят изометрические оси, строят ромб, в который вписывают овал (рис. 3.18, г).
Расположение осей диметрической проекции и способ их построения приведены на рис. 3.19. Ось z проводят вертикально, ось х – под углом около 7° к горизонтали, а ось у образует с горизонталью угол приблизительно в 41° (рис. 3.19, а). Построить оси можно, пользуясь линейкой и циркулем. Для этого из точки О откладывают по горизонтали вправо и влево по восемь равных делений (рис. 3.19, б). Из крайних точек восставляют перпендикуляры. Высота их равна: для перпендикуляра к оси х – одному делению, для перпендикуляра к оси у – семи делениям. Крайние точки перпендикуляров соединяют с точкой О.
Рис. 3.19. Расположение осей диметрической проекции
При вычерчивании диметрической проекции, как и при построении фронтальной, размеры по оси у сокращают в 2 раза, а по осям х и z откладывают без сокращений.
На рис. 3.20 показана диметрическая проекция куба с вписанными в его грани окружностями. Как видно из этого рисунка, окружности в диметрической проекции изображаются эллипсами.
Рис. 3.20. Диметрические проекции окружностей, вписанных в грани куба
Технический рисунок – это наглядное изображение, выполненное по правилам аксонометрических проекций от руки, на глаз. Им пользуются в тех случаях, когда нужно быстро и наглядно показать на бумаге форму предмета. Обычно в этом возникает необходимость при конструировании, изобретательстве и рационализации, а также при обучении чтению чертежей, когда с помощью технического рисунка нужно пояснить форму детали, представленной на чертеже.
Выполняя технический рисунок, придерживаются правил построения аксонометрических проекций: под теми же углами располагают оси, так же сокращают размеры по осям, соблюдают форму эллипсов и последовательность построения.
Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрическую плоскость проекций в эллипсы.
Малая ось эллипса всегда располагается вдоль отсутствующей оси в плоскости проекций. Большая ось эллипса перпендикулярна его малой оси. Так, в плоскости ХОY малая ось расположена вдоль оси Z, в плоскости ХОZ – вдоль оси Y, в плоскости YОZ – вдоль оси Х.
В прямоугольной изометрии большая ось эллипсов 1, 2, 3 равна 1,22 диаметра окружности, а малая – 0,71 диаметра окружности (рис. 2.29).
В прямоугольной диметрии большая ось эллипсов 1, 2, 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 – 0,95d, эллипсов 2, 3 – 0,35d. Величину большой и малой оси подсчитывают или определяют графическим путем (рис. 2.30).
В косоугольной фронтальной диметрии окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость в виде окружности; окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, – в виде эллипсов (рис. 2.31). При этом большая ось эллипсов равна 1,07d, а малая ось – 0,33d. Большая ось горизонтального эллипса с осью Х составит угол 7°14′, и тот же угол будет между осью Z и большой осью профильного эллипса.
Фронтальную диметрию целесообразно применять в тех случаях, когда необходимо сохранить неискаженными фигуры, расположенные во фронтальных плоскостях.
На практике принято заменять эллипсы овалами, что значительно облегчает построение.
Пример выполнения овала, расположенного в горизонтальной плоскости проекций, дан на рис. 2.32.
Построение овала начинают с проведения осей симметрии и аксонометрических осей. Большая ось равна 1,22d, малая ось – 0,71d, где d – диаметр изображаемой окружности. Через точку О – начало аксонометрических осей – проводят окружности, диаметры которых соответственно равны большой и малой осям эллипса. На вертикальном диаметре большой окружности отмечают центры О1 и О2, а на горизонтальном диаметре малой окружности – О3 и О4. Эти точки являются центрами сопряжения дуг овала. Проводят прямые О2О3, О2О4, О1О3, на которых расположены точки со-
пряжения дуг овала. Две дуги радиуса R1 = О3В описывают из центров О3 и О4, а две другие радиуса R2 = О1А – из центров О1 и О2.
Для построения овала, расположенного в горизонтальной плоскости проекций, можно использовать и другой способ (рис. 2.33). В прямоугольной изометрии малую ось овала будем располагать вдоль оси Z, большую ось проведем перпендикулярно к малой оси. Из точки О пересечения этих осей циркулем сделаем засечки на осях Х и Y радиусом, равным радиусу заданной окружности.
Полученные точки 1, 2, 3, 4 являются точками сопряжения дуг овала.
Из точки 1, лежащей на оси Х, проведем перпендикуляр к оси Y. На пересечении перпендикуляра с большой и малой осями получим две точки О1 и О2, которые являются центрами сопряжения дуг овала. Из точек О1 и О2 радиусами R1 = О1 – 1 и R2 = О2 – 1 опишем дуги окружностей. Аналогично построим две другие дуги. Построение будем проводить из точки 3. Перпендикуляр, проведенный из точки 3 к оси Y, даст нам еще два центра: О3 и О4, из которых радиусами R1= О3 – 3 и R2 = О4 – 3 опишем дуги окружностей.
Во фронтальной и профильной плоскостях построение овалов аналогично.
Рассмотрим построение прямоугольной диметрии овала, заменяющего эллипс, в который проецируется окружность, расположенная в плоскости П1 (рис. 2.34). Через точку О проводим оси диметрии ОХ, ОY, ОZ и направление большой оси овала перпендикулярно оси ОZ. Малая ось совпадет с направлением оси ОZ. Вдоль большой оси овала откладывают длину, равную 1,06d; вдоль малой оси – величину 0,35d. Для определения положения центра О1 сопряжения большой дуги овала откладывают вдоль малой оси от точки О величину 1,06d. От точки В откладывают величину ВО2, равную 0,09d, и определяют положение центра сопряжения О2 малой дуги овала.
Проводят линии центров О1О2 и т.д. Из центра О2 радиусом R = О2В проводят дугу овала до пересечения с линией центров в точке сопряжения. Из центра О1 радиусом R = О1А проводят большую дугу овала. Аналогично проводят дуги из двух не указанных на чертеже центров.
При построении прямоугольной диметрии овала, расположенного в плоскости П2 (рис. 2.35), через точку О проводят оси диметрии ОХ, ОY, ОZ. Через точку О проводят направление большой оси овала перпендикулярно оси Оу. Малая ось совпадает с направлением оси ОY. На осях ОY и ОZ откладывают величину d изображаемой окружности и получают точки М, N, K, L, являющиеся точками сопряжения дуг овала. Через точки М и N проводят горизонтальные прямые, которые в пересечении с осью Оу и перпендикуляром к ней дают точки О1, О2, О3, О4 – центры дуг овала. Из центров О1 и О3 описывают дуги радиусом R1 = О3L, а из центров О4 и О2 – дуги радиусом R2 = О4М.
В профильной плоскости построение овала аналогично построению овала в горизонтальной плоскости с учетом расположения большой и малой осей овала.
Читайте также: