Как сделать нейтраль
Схема сети с глухозаземленной нейтралью служит для защиты человека от поражения электрическим током. В аварийных случаях глухозаземленная нейтраль выравнивает потенциалы, вследствие чего касание человека к металлическим частям электрооборудования становится безопасным.
Защитное устройство также сыграет свою роль в аварийных ситуациях, отключив подачу питания, так как при коротких замыканиях сила тока в сети возрастает.
Глухозаземленная нейтраль — устройство и работа
Питание потребителей электрической энергией производится с помощью силовых трансформаторов и генераторов. Чаще всего обмотки трех фаз этих устройств соединены по схеме звезды, в которой общая точка является нейтралью. Если эта нейтраль соединена с заземлением через малое сопротивление, либо напрямую, непосредственно возле источника питания, то ее называют глухозаземленная нейтраль.
Рис 1
Применяются также и другие режимы работы нейтрали с заземлением, в зависимости от режимов работы сети при замыканиях на землю, необходимых методов защиты человека от удара током, методов ограничения перенапряжений с:
- Эффективно заземленной нейтралью.
- Незаземленной нейтралью.
- Компенсированной нейтралью.
Такие режимы используются для электрических устройств на 6 киловольт и более. Изолированная нейтраль используется до 1 кВ, и не нашла широкого применения. Она делает безопасной работу только передвижных устройств, в которых невозможно выполнить контур заземления.
Монтаж на нейтрали устройств компенсации дает возможность снизить емкостный ток замыкания устройств, действующих с напряжением более 1 кВ. Компенсация производится с помощью катушек индуктивности, вследствие чего ток в точке замыкания становится нулевым. Для эффективной работы защиты применяется заземление нейтрали резистором. Он образует активную часть тока, на который действует защитное реле.
Глухозаземленная нейтраль является наиболее эффективным способом защиты людей от поражения током. Она применяется в большинстве электрических сетей питания. Напряжение между фазами называется линейным, а между фазой и нолем – фазным. Номинальное напряжение электроустановки определяется по линейному значению напряжения. Оно может быть 220, 380, 660 вольт. В бытовых сетях питания напряжение равно 380 вольт.
Однофазные потребители подключаются между фазами и нолем равномерно. Силовой трансформатор на подстанции имеет заземляющий контур. В него входят металлические детали, соединенные между собой, и углубленные в землю. Размеры контура определяют с учетом эффективного распределения тока по земле при замыкании.
Работоспособность заземления определяется величиной сопротивления растекания тока. Допустимые величины этого параметра указаны в правилах электроустановок. Для электроподстанций сопротивление заземления не должно быть выше 4 Ом при напряжении 380 вольт.
Заземляющий контур соединяется с нулевой шиной, выполненной в виде металлической полосы. К ней подключается провод нулевого вывода трансформатора. Также к ней подключаются жилы кабелей, которые отходят к потребителям. Фазы подключаются к автоматическим выключателям, рубильникам, контактам предохранителей.
Кабели, отходящие от подстанции, имеют четыре жилы. В кабелях старого образца могут быть три жилы в алюминиевой оболочке, которая выступает в качестве провода ноля. Для ввода питания существуют вводные распределительные устройства, которые содержат шину ноля. К ней присоединяют нулевые жилы отходящих и питающих кабелей. Вводное устройство может иметь контур повторного заземления, подключенного также к шине ноля.
Чтобы понять, как работает глухозаземленная нейтраль, рассмотрим аварийный режим.
Пример аварийного случая
На некотором электрооборудовании, на котором работают люди, произошел обрыв провода фазы. При этом фазный провод прикоснулся к металлическим корпусным элементам. В результате возникло короткое замыкание, при котором резко повысилась сила тока. Плавкий предохранитель или электрический автомат сработают и отключат питание сети.
Резистор R0 (Рис. 1) будет иметь меньшее сопротивление, нежели сопротивление по пути протекания тока по телу человека, который случайно прикоснулся фазного проводника. Это исключает удар электрическим током.
В теории потенциал провода ноля относительно земли имеет нулевое значение. Повторное заземление в электроустановке потребителя упрочняет эту нулевую величину.
Возможные случаи поражения людей током:
- Ошибки при эксплуатации и ремонте, которые приводят к прикосновению к частям и элементам оборудования, находящегося под напряжением.
- Повреждение изоляции в электрооборудовании, в результате чего металлический корпус попадает под напряжение.
- Повреждение изоляции токоведущих элементов или неисправность электрооборудования, вследствие чего на поверхности пола возникает зона разности потенциалов, которая создает опасность для прохождения в ней людей. Это называется шаговым напряжением.
- Повреждение изоляции кабелей и проводников, вследствие чего металлические конструкции, по которым проходят кабели, оказываются под напряжением.
Чтобы исключить аварийные случаи, корпуса устройств соединяют с заземлением. В промышленности по периметру цехов прокладывают металлическую полосу, к которой подключают все металлические элементы. Таким образом уравниваются потенциалы с землей.
При замыкании фазы на корпус заземленного устройства, ток будет протекать к заземлению, даже при отказе защитных устройств. Сопротивление тела человека относительно земли значительно выше сопротивления между корпусом устройства и землей. Таким образом, человека спасает глухозаземленная нейтраль.
Другим принципом защиты является быстрое обесточивание сети. Этому способствует защитное устройство в виде автоматического выключателя, либо предохранителя.
Шаговое напряжение действует следующим образом. Если на влажном бетонном полу лежит неизолированный проводник, находящийся под напряжением, то подходить к нему очень опасно. Напряжение отходит от него волнами, подобно кругам на воде. При попадании ног человека в эту зону, возникает удар электрическим током.
Чтобы защитить людей от шагового напряжения, в полу помещения встраивают металлическую сетку, которая в разных местах соединяется с заземляющим контуром. Этим способом ноги человека шунтируются металлической арматурой решетки, и основная часть электрического тока пройдет мимо человека.
Требования ПУЭ
Заземление должно подключаться к устройству специальным проводником. Для сокращения пути протекания электрического тока и уменьшения затрат, подбирают место непосредственно рядом с источником напряжения, например, трансформатором. Имеется ограничение, заключающееся в том, что если заземлителем является имеющийся бетонный фундамент, то к арматуре бетонного основания, выполненного из металла, подключение выполняют в двух и более местах.
Подобное число подключений выполняют к каркасам из металла, которые расположены в глубине грунта. При таких условиях система заземления способна достаточно эффективно защитить человека от неприятных ситуаций.
Если в качестве источников питания выступают трансформаторы, находящиеся на разных этажах здания, то подключение к нейтрали производится отдельным проводом, который подключают к металлическому каркасу всего строения.
В цепи подключения заземления не должно находиться предохранителей, плавких вставок и других компонентов, которые могут нарушить неразрывность этой цепи. Также принимают вспомогательные меры, которые препятствуют механическим повреждениям.
Некоторые ограничения ПУЭ
- Если на рабочих, защитных или нулевых проводниках установлен токовый трансформатор, то провод заземлителя монтируется сразу за этим устройством, к нейтральному проводнику.
- Сопротивление заземляющего устройства в сети 220 вольт ограничивается наибольшей величиной 4 Ом, за исключением особых свойств земли, которые создают повышенное сопротивление более 100 Ом на метр.
- на воздушных линиях передач заземление устанавливают на конце и на вводе линии для дублирования заземления. Это дает возможность эффективной работы защитных устройств. Это правило используют в случае, когда нет надобности в монтаже большого числа устройств, которые могут устранить перенапряжения при ударах молнии.
• При выборе проводников для устройства заземления необходимо применять нормативы по наименьшим допустимым размерам и материалу проводников, применяющихся для повторного заземления, проложенного в земле.
Например, если используется стальной уголок, то толщина его стенки должна быть не менее 4 мм. Общая площадь сечения для проводов заземления, соединяющихся с основной шиной, согласно п. 1.7.117 ПУЭ, должна быть:
- 10 мм 2 – медный провод.
- 16 мм 2 – алюминиевый проводник.
- 75 мм 2 – стальной проводник.
Электрический автомат, устанавливаемый для защиты, должен иметь скорость срабатывания при коротком замыкании более 0,4 с при 220 вольт.
В бытовой сети согласно п. 7.1.36 ПУЭ требуется прокладывать сеть к потребителям от общих щитков тремя проводниками: фаза, рабочий ноль и защитное заземление (глухозаземленная нейтраль). Однако во многих квартирах это требование нередко нарушается, что подтверждается отсутствием в розетках заземляющего контакта.
Старые нормативные требования для отечественных зданий были определены для незначительных мощностей. На сегодняшний день мощности бытовых электрических устройств значительно повысились. В квартирах появились кондиционеры, варочные панели, духовые шкафы, которые имеют повышенную мощность.
Для повышения эффективности защиты в современных квартирах обязательным условием является наличие заземления. В новых домостроениях глухозаземленная нейтраль уже заложена в стандартных проектах. В старых постройках хорошие хозяева монтируют заземление при капитальном ремонте.
Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы:
- системы с глухозаземленной нейтралью к ним относятся система заземления TN (которая в свою очередь делится на системы TN-C, TN-C-S, TN-S) и система заземления TT
- системы с изолированной нейтралью к ним относится система заземления IT
Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:
- T (от франц. terre — земля) — заземлено;
- N (от франц. neutre — нейтраль) — соединение с нейтралью источника питания (зануление);
- I (от франц. isolé — изолированный) — изолировано от заземления.
Так же в статье встречаются следующие аббревиатуры:
- N — функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
- PE — защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
- PEN — проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.
Теперь подробно разберем перечисленные типы систем заземления.
2. Система заземления TN
Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).
Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.
2.1 Система заземления TN-C
Система TN-C — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN-проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).
Система заземления TN-C схема:
Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.
Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN-проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.
Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.
2.2 Система заземления TN-C-S
Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN-проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N-проводник) и нулевой защитный (PE-проводник).
Согласно пункту 1.7.135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.
Таким образом схема системы заземления TN-C-S будет иметь следующий вид:
Примечание: перемычка между шинами должна иметь сечение не менее сечения PEN-проводника.
Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.
Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.
Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.
Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.
Подробную инструкцию по устройству заземления в частном доме по системе TN-C-S вы можете посмотреть здесь.
2.3 Система заземления TN-S
Система TN-S — это система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.
Система заземления TN-S схема:
Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.
Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).
3. Система заземления TT
Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.
Система заземления TT схема:
В соответствии с пунктом 1.7.59. ПУЭ питание электроустановок по системе ТТ, допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.
4. Система заземления IT
Система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.
Система заземления IT схема:
Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т.п
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Уберечь человека от поражения электрическим током во время возникновения аварийных ситуаций помогает глухозаземленная нейтраль, обеспечивающая его защитное отключение. Это становится возможным за счет выравнивания потенциалов и срабатывания устройства в момент возрастания силы тока.
Нужно понимать, что использование этого механизма в реальной жизни так же, как и с изолированной нейтралью, строго регулируется специальными правилам устройства электроустановок (ПУЭ).
Принцип действия
Согласно Правилам, под этим термином стоит понимать соединение трансформатора (нейтрали генератора) с устройством для заземления. Так, например, если речь идет о трехпроводной сети, прокладываемой к жилому дому от источника питания, нейтраль будет распределена по щиткам с последующим к ней подключением контуров заземления электрооборудования дома. Цепь такого рода не допускает установку предохранителей, подверженных плавлению, и устройств, способных выступить в роли разрушителей единства цепи.
Рабочий ноль — проводник, работающий в тандеме с третьим проводом. Они помогают создавать в доме нужное для работы основных электроприборов напряжение.
Рассмотрим пример аварийной ситуации. В стиральной машине вибрация стала причиной отсоединения фазного провода от места крепления, что привело к его контакту с металлическим корпусом. Что происходит? Короткое замыкание, в процессе чего сила тока быстро набирает обороты. Автовыключатель справится с задачей — питание отключится. Человек, случайно коснувшийся провода, не будет поражен током, так как сопротивление R0 окажется меньше, чем при прохождении тока через человеческое тело.
Для эффективной работы системы с глухозаземленной нейтралью или с изолированной нейтралью (без подключения к устройству заземления) в ответственный момент важно опять же следовать Правилам.
Достоинства и недостатки метода
Система имеет как плюсы, так и минусы.
К достоинствам можно отнести следующие факты:
- Сеть незаменима в процессе подавления перенапряжений.
- Нейтраль данного типа открывает возможности в использовании оборудования с таким уровнем изоляции, который изначально предполагает фазное напряжение.
- Не потребуется специальная схема защиты, достаточно будет обычных функций защиты от тока перегрузки в фазах для удаления глухих замыканий фазы на землю.
К минусам стоит отнеси:
- Сети с нейтралью глухозаземленного типа — это риск повреждений и помех вследствие большого замыкания тока на землю.
- Фидер после повреждения будет работать со сбоями.
- Сохраняется опасность для человека во время действия повреждения в результате создания высокого напряжения прикосновения.
Немного о применении метода заземления с глухозаземленной нейтралью: его не выбирают для создания подземных или воздушных сетей среднего напряжения в Европе, зато активно используют в распределительных сетях североамериканских объектов. Целесообразно использование глухозаземленной нейтрали в случаях маломощности источника при коротком замыкании.
Что такое системы TN
TN будут называться системы с использованием глухозаземленной нейтрали для подключения защитных и нулевых функциональных проводников. Важный момент — в таких системах к нулевому проводнику, в свою очередь соединенному с нейтралью, должны быть подключены все корпусные электропроводящие детали.
Такая система отличается подключением нейтрали к контуру заземления вблизи трансформаторной подстанции. Нейтраль в этом случае не заземляется с помощью дугогасящего реактора.
На предприятиях промышленного типа наиболее целесообразными являются четырехпроводные трехфазные сети с глухозаземленной нейтралью напряжением 380/220 В со вторичной обмоткой, объединенной в звезду и наглухо соединенной нейтральной точкой с устройством для заземления.
Двигатели при подключении к фазам сети питаются при линейном напряжении, источником питания ламп является фазное напряжение при подключении их между нейтральными и фазными проводами. N -проводу отводится сразу две роли — он является рабочим, необходимым для присоединения однофазных приемников, и проводом зануления с присоединенными металлическими корпусами установок, которые не находятся под нормальным напряжением.
Зануление пробоя изоляции обмотки двигателя приведет к появлению большого тока короткого замыкания и срабатыванию механизма защиты, в результате чего двигатель будет отключен от сети. В случае отсутствия зануления корпуса двигателя повреждение изоляции обмотки приведет к созданию опасной ситуации на корпусе касательно земли.
В случае однофазного КЗ на землю относительно нее напряжения на целых фазах остается прежним, поэтому изоляция может быть устроена с уклоном не на линейное, а на фазное напряжение.
Итак, глухозаземленной нейтралью называется нейтраль генератора или трансформатора, которая подсоединена к заземляющему устройству.
Главным преимуществом ее использования является возможность предотвращения воспламенения электропроводки за счет автоматического отключения поврежденного участка от сети. Кроме того, в случае короткого замыкания между нейтральным проводом и поврежденной фазой и соответственно увеличивающимся током срабатывают токовые реле, опасность поражения сводится к минимуму.
Что такое нейтраль?
Согласно определения из ГОСТ 30331.1-2013 [1]:
Нейтраль (neutral) — это общая часть многофазной системы переменного тока, соединённой звездой, находящаяся под напряжением, или средняя часть однофазной системы переменного тока, находящаяся под напряжением.
Какое электрооборудование имеет нейтрали?
Чтобы ответить на данный вопрос обратимся к книге [2] Ю.В. Харечко, который пишет:
Что представляет собой нейтраль?
Ю.В. Харечко в своей книге [2] вполне однозначно описал нейтраль:
Найти нейтраль вы можете на рисунке 1 ниже (в качестве примера).
Рис. 1. Система TT трехфазная четырехпроводная (показана нейтраль) (на основе рисунка 31F1 ГОСТ 30331.1-2013)
Если обратиться к книгам Ю.В. Харечко [2] и [3], то можно в них найти анализ действовавшей ранее и действующей в настоящее время нормативной документации в которой некорректно трактуются и употребляются данные термины. В частности Ю.В. Харечко вполне справедливо делает заключение:
Заземление в нашей современной жизни является неотъемлемой частью. Конечно, можно обойтись и без заземления, ведь, сколько мы жили без него. Но, с появлением современной бытовой техники, заземление является просто обязательным условием для защиты человека от поражения электрическим током.
Общие понятия.
Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.
Заземление предназначено для отвода токов утечки, возникающих на корпусе электрооборудования при аварийном режиме работы этого оборудования, и обеспечение условий к немедленному отключению напряжения с поврежденного участка сети путем срабатывания устройств защитного и автоматического отключения.
Например: произошел пробой изоляции между фазой и корпусом электрооборудования — на корпусе появился некоторый потенциал фазы. Если оборудование заземлено, то это напряжение потечет по защитному заземлению, обладающему низким сопротивлением, и даже, если не сработает устройство защитного отключения, то при прикосновении человека к корпусу, ток, который остался на корпусе, будет не опасен для человека. Если же оборудование не заземлено — весь ток потечет через человека.
Заземление состоит из заземлителя и заземляющего проводника, соединяющего заземляющее устройство с заземляемой частью.
Заземлителем является металлический стержень, чаще всего стальной, или другой металлический предмет, имеющий контакт с землей непосредственно или через промежуточную проводящую среду.
Заземляющий проводник – это провод, соединяющий заземляемую часть (корпус оборудования) с заземлителем.
Заземляющее устройство – это совокупность заземлителя и заземляющих проводников.
Немного теории.
Все Вы видели во дворах небольшие кирпичные сооружения, в которые заходят и выходят силовые кабеля — это трансформаторные подстанции (электроустановки). Трансформаторные подстанции служат для приема, преобразования и распределения электрической энергии. Любая подстанция имеет силовой трансформатор, служащий для преобразования напряжения, распределительные устройства и устройства автоматического управления и защиты.
Принимая высоковольтное напряжение сети 6 – 10 kV (киловольт) подстанция преобразует его и передает потребителю — то есть нам. Прием и преобразование напряжения обеспечивает силовой трансформатор, с выхода которого к потребителю уходит трехфазное переменное напряжение 0,4 kV или 400 Вольт.
Это стандартная схема обеспечения потребителей электрической энергией, на базе которой были разработаны дополнительные схемы, различающиеся по способу подключения защитного заземления, подключения и защиты электрооборудования, а также принятых мер для защиты людей от поражения электрическим током.
Трансформаторная подстанция имеет свой контур заземления, к которому подключены все металлические корпуса оборудования подстанции. Контур заземления представляет собой вбитые в землю металлические стержни, связанные между собой металлической шиной при помощи сварки. Эту шину называют шиной заземления.
Шина заземления заводится в здание подстанции и прокладывается по периметру здания. К ней привариваются болты, к которым уже через заземляющие проводники подключается все оборудование подстанции.
Системы заземления.
Свободные концы катушек подключаются к проводам трехфазной сети, уходящей к потребителям трехфазной или однофазной электрической энергии. Такое соединение нейтрали называется глухозаземленной и используется в системах заземления типа TN.
1. Совместно с одной из трех фаз образует напряжения 220 Вольт.
2. Выполняет защитную функцию, так как имеет прямой контакт с землей.
На данный момент существует 3 типа систем заземления:
1. TN – система, в которой нейтраль трансформатора заземлена, а открытые проводящие части присоединены к нейтрали;
2. TT — система, в которой нейтраль трансформатора заземлена, а открытые проводящие части заземлены при помощи заземляемого устройства, электрически независимого от заземленной нейтрали трансформатора;
3. IT — система, в которой нейтраль трансформатора изолирована от земли или заземлена через устройства, имеющие большое сопротивление, а открытые проводящие части заземлены.
Все три системы заземления разработаны для защиты людей и электрооборудования от действия электрического тока. Данные системы заземления считаются равноценными для защиты людей, но они не равноценны по способу обеспечения надежности (безотказности, ремонтопригодности) электроснабжения потребителей электрической энергией.
Обозначаются системы заземления двумя буквами.
Первая буква определяет связь нейтрали трансформатора с землей:
T – нейтраль заземлена;
I – нейтраль изолирована от земли.
Вторая буква определяет связь открытых проводящий частей с землей:
T – открытые проводящие части непосредственно заземлены;
N – открытые проводящие части присоединены к глухозаземленной нейтрали трансформатора.
Теперь рассмотрим все системы по порядку.
1. Система заземления TN.
Открытая проводящая часть – доступная прикосновению проводящая часть электроустановки (например: корпус бытовых электроприборов), которая в нормальном режиме работы электроустановки не находится под напряжением, но может оказаться под напряжением в случае повреждения изоляции.
Как правило, повреждение изоляции может быть вызвано многими факторами: это и старение оборудования, механические повреждения, длительная эксплуатация при максимальных нагрузках, скопление пыли между корпусом оборудования и токоведущими частями, образование влаги на пыльной поверхности, находящейся рядом с токоведущими частями, климатическое воздействие, заводской брак и т.д.
Так вот, в свою очередь система TN разделяется еще на три подсистемы:
Система TN-С.
Система TN-C — это одна из первых систем заземления, которая еще встречается в старом жилищном фонде построенном до середины 90-х годов, но, не смотря на это, она еще существует и действует. Эта система прокладывается четырехпроводным кабелем, в котором идут 3 фазных провода и 1 нулевой.
На сегодняшний день, практически вся современная техника питается через импульсные блоки питания, которые не имеют гальванической развязки с сетью 220 Вольт.
Это связано с тем, что в импульсных блоках питания есть помехоподавляющие фильтры, которые предназначены для подавления высокочастотных помех питающей сети 220 Вольт, и которые через развязывающие конденсаторы соединены с корпусом оборудования.
Хотя, благодаря импульсным блокам питания современная техника стала меньше, дешевле и легче, но и, естественно, требования в отношении уровня электробезопасности стали уже выше.
Но, как говорится, спасение утопающих дело рук самих утопающих, и поэтому некоторые умельцы, чтобы обезопасить себя, тянут заземление самостоятельно. Одни садятся на батареи центрального отопления, другие подключаются к корпусу этажного щита, ставят перемычку в розетке, устанавливают УЗО, а некоторые даже делают свой контур заземления.
Например: Вы подключились третьим проводником к корпусу этажного щита и думаете что заземлились. Это большое заблуждение. Вы сделали зануление — и не более того.
Защитное зануление – это преднамеренное электрическое соединение открытых проводящих частей электроустановки (например, корпус оборудования) с глухозаземленной нейтралью генератора или силового трансформатора, выполняемое в целях электробезопасности.
Глухозаземленная нейтраль – это нейтраль трансформатора, присоединенная непосредственно к заземляющему устройству.
А это уже неправильная схема питания для бытовых приборов, которая приведет к короткому замыканию и поломке всей техники. Автомат защиты сработает, но только от тока короткого замыкания, который создаст Ваша уже сгоревшая техника. А если в этот момент Вы возьметесь за металлический неокрашенный корпус, то вдобавок, на мгновение, получите заряд бодрости.
Хотя в ПУЭ №7 зануление допускается и считается дополнительной мерой защиты. Но опять же возникает вопрос: в каком месте делать зануление. Здесь решать Вам.
Другой пример.
Вы подключились к батарее центрального отопления, пытаясь таким-образом обмануть счетчик или заземлиться. На Вашем стояке сосед снизу делает ремонт и заменил старые ржавые трубы на пластиковые. Как итог — Вы оказались отрезанными от Вашей мнимой земли. Теперь Вы и соседи сверху будут находиться в постоянной опасности.
Вдруг Ваш сосед задумал подшутить над Вами из вредности или просто из зависти, что у Вас есть заземление, а у него его нет. Возьмет и отрежет заземляющий проводник. Или ответственный по дому увидит неположенный по проекту провод и уберет его, а Вы живете и знать не знаете, что остались без заземления. К тому же еще заземление должно периодически проверятся специальными приборами. Вы это будете делать? У Вас есть такие приборы?
Как вариант защиты Вы установили в двухпроводную линию УЗО. В принципе, это не такой уж плохой вариант, но тоже имеет свои нюансы.
Возьмем, к примеру, все тот же пробой изоляции на корпус, и при этом, одновременное прикосновение к оголенной батарее центрального отопления.
В системе TN-C другой случай. При одновременном касании к корпусу и оголенной батарее центрального отопления через Вас на батарею потечет ток. Если будет стоять обыкновенный автомат, то Вы, в зависимости от силы тока, так и останетесь висеть между двух огней, так как проходящий через Вас ток не будет являться током короткого замыкания. Если же будет стоять УЗО, то по достижению порога уставки оно сработает и отключит питание.
И вот здесь наступает момент истины: УЗО, в системе TN-C, от поражения электрическим током Вас не спасет. Свой заряд бодрости Вы получите. Вопрос только во времени нахождения под действием электрического тока.
В ПУЭ №7 по поводу установки УЗО в систему TN-C сказано:
1.7.80. Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ-проводник электроприемника должен быть подключен к PEN-проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.
Опять возникает вопрос: откуда тянуть защитный проводник. Так что, здесь опять решать Вам.
Поэтому, если Вы живете в домах старой постройки и у Вас двухпроводная сеть, то обезопасив свою квартиру заземлением, как Вам кажется, проблема не решиться, а только ухудшится для Вас или соседей. Проблему двухпроводной сети надо решать коллективно – всем домом:
1. Переделка или изменение системы питания дома с четырехпроводной на пятипроводную линию.
2. Замена старых этажных щитов на новые, рассчитанные для пятипроводной линии.
Но не подумайте, что все так страшно. В этой части статьи я рассказал о возможных ситуациях, которые могут возникнуть с нами при неправильном подключении и использовании защитного заземления. Во второй части статьи мы продолжим разбираться с оставшимися системами заземления.
Удачи!
Читайте также: