Как сделать натуральную величину сечения пирамиды
Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.
Замечание
Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве”.
Важные определения
1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.
2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.
3. Прямая и плоскость параллельны, если они не имеют общих точек.
4. Две плоскости параллельны, если они не имеют общих точек.
5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен \(90^\circ\) .
6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
7. Две плоскости называются перпендикулярными, если угол между ними равен \(90^\circ\) .
Важные аксиомы
1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.
3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.
Важные теоремы
1. Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.
2. Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) — прямая \(m\) — параллельна прямой \(p\) .
3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.
4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны:
\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]
5. Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.
6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.
7. Теорема о трех перпендикулярах.
Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.
8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.
Замечание
Еще один важный факт, часто использующийся для построения сечений:
для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.
Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA'\) и \(BB'\) (точки \(A', B'\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A'B'\) – проекция прямой \(a\) на плоскость \(\mu\) . Точка \(M=a\cap A'B'\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\) .
Причем заметим, что все точки \(A, B, A', B', M\) лежат в одной плоскости.
Пример 1.
Дан куб \(ABCDA'B'C'D'\) . \(A'P=\dfrac 14AA', \ KC=\dfrac15 CC'\) . Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\) .
Решение
1) Т.к. ребра куба \(AA', CC'\) перпендикулярны \((ABC)\) , то точки \(A\) и \(C\) — проекции точек \(P\) и \(K\) . Тогда прямая \(AC\) – проекция прямой \(PK\) на плоскость \(ABC\) . Продлим отрезки \(PK\) и \(AC\) за точки \(K\) и \(C\) соответственно и получим точку пересечения прямых – точку \(E\) .
2) Найдем отношение \(AC:EC\) . \(\triangle PAE\sim \triangle KCE\) по двум углам ( \(\angle A=\angle C=90^\circ, \angle E\) – общий), значит, \[\dfrac=\dfrac\]
Если обозначить ребро куба за \(a\) , то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\) . Тогда:
Пример 2.
Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\) , высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\) , считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\) , считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\) .
Решение
1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\) . Т.к. \(DO\perp (ABC)\) , то и \(NO\perp (ABC)\) . Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\) . Точка \(Q\) будет лежать на медиане \(AK\) .
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\) , то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\) , то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\) , следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\) .
Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\) . \(L\) – точка пересечения этих прямых.
2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\) , хотя она могла бы лежать и внутри него; а как правильно?).
Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\) . Тогда медиана \(AK=\dfrac2a\) . Значит, \(OK=\dfrac13AK=\dfrac 1a\) . Найдем длину отрезка \(OL\) (тогда мы сможем понять, внутри или вне отрезка \(OK\) находится точка \(L\) : если \(OL>OK\) – то вне, иначе – внутри).
а) \(\triangle AMQ\sim \triangle ADO\) по двум углам ( \(\angle Q=\angle O=90^\circ, \ \angle A\) – общий). Значит,
\[\dfrac=\dfrac=\dfrac=\dfrac 45 \Rightarrow MQ=\dfrac 45a, \ AQ=\dfrac 45\cdot \dfrac 1a\]
Значит, \(QK=\dfrac2a-\dfrac 45\cdot \dfrac 1a=\dfrac7a\) .
б) Обозначим \(KL=x\) .
\(\triangle LMQ\sim \triangle LNO\) по двум углам ( \(\angle Q=\angle O=90^\circ, \ \angle L\) – общий). Значит,
Следовательно, \(OL>OK\) , значит, точка \(L\) действительно лежит вне отрезка \(AK\) .
Замечание
Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\) ).
Пример 3
Дана правильная четырехугольная пирамида \(SABCD\) . Найдите сечение пирамиды плоскостью \(\alpha\) , проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\) .
Решение
1) Обозначим середину ребра \(SA\) за \(M\) . Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\) . Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\) .
Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\) , она должна содержать некоторую прямую, параллельную \(BD\) . Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\) . Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) ( \(K\in SB, P\in SD\) ). Тогда, соединив точки \(C, P, M, K\) , получим сечение пирамиды плоскостью \(\alpha\) .
2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\) . Таким образом мы полностью определим построенное сечение.
Заметим, что так как \(KP\parallel BD\) , то по теореме Фалеса \(\dfrac=\dfrac\) . Но \(SB=SD\) , значит и \(SK=SP\) . Таким образом, можно найти только \(SP:PD\) .
Рассмотрим \(\triangle ASC\) . \(CM, SH\) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то есть \(SO:OH=2:1\) .
Теперь по теореме Фалеса из \(\triangle BSD\) : \(\dfrac=\dfrac=\dfrac21\) .
3) Заметим, что по теореме о трех перпендикулярах \(CO\perp BD\) как наклонная ( \(OH\) – перпендикуляр на плоскость \(ABC\) , \(CH\perp BD\) – проекция). Значит, \(CO\perp KP\) . Таким образом, сечением является четырехугольник \(CPMK\) , диагонали которого взаимно перпендикулярны.
Пример 4
Дана прямоугольная пирамида \(DABC\) с ребром \(DB\) , перпендикулярным плоскости \(ABC\) . В основании лежит прямоугольный треугольник с \(\angle B=90^\circ\) , причем \(AB=DB=CB\) . Проведите через прямую \(AB\) плоскость, перпендикулярную грани \(DAC\) , и найдите сечение пирамиды этой плоскостью.
Решение
1) Плоскость \(\alpha\) будет перпендикулярна грани \(DAC\) , если она будет содержать прямую, перпендикулярную \(DAC\) . Проведем из точки \(B\) перпендикуляр на плоскость \(DAC\) — \(BH\) , \(H\in DAC\) .
Проведем вспомогательные \(BK\) – медиану в \(\triangle ABC\) и \(DK\) – медиану в \(\triangle DAC\) .
Т.к. \(AB=BC\) , то \(\triangle ABC\) – равнобедренный, значит, \(BK\) – высота, то есть \(BK\perp AC\) .
Т.к. \(AB=DB=CB\) и \(\angle ABD=\angle CBD=90^\circ\) , то \(\triangle ABD=\triangle CBD\) , следовательно, \(AD=CD\) , следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\) .
Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\) ; наклонная \(BK\perp AC\) , значит и проекция \(HK\perp AC\) . Но мы уже определили, что \(DK\perp AC\) . Таким образом, точка \(H\) лежит на отрезке \(DK\) .
Соединив точки \(A\) и \(H\) , получим отрезок \(AN\) , по которому плоскость \(\alpha\) пересекается с гранью \(DAC\) . Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\) .
2) Определим точное положение точки \(N\) на ребре \(DC\) .
Обозначим \(AB=CB=DB=x\) . Тогда \(BK\) , как медиана, опущенная из вершины прямого угла в \(\triangle ABC\) , равна \(\frac12 AC\) , следовательно, \(BK=\frac12 \cdot \sqrt2 x\) .
Рассмотрим \(\triangle BKD\) . Найдем отношение \(DH:HK\) .
Заметим, что т.к. \(BH\perp (DAC)\) , то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\) . Тогда \(\triangle DBH\sim \triangle DBK\) , следовательно
\[\dfrac=\dfrac \Rightarrow DH=\dfrac3x \Rightarrow HK=\dfrac6x \Rightarrow DH:HK=2:1\]
Рассмотрим теперь \(\triangle ADC\) . Медианы треугольника точной пересечения делятся в отношении \(2:1\) , считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\) .
В этом разделе мы рассмотрим методы построения сечений многогранников. Плоскость сечения, как правило, будет задаваться тремя точками – K, L, M. Сложность такой задачи во многом определяется расположением точек, задающих плоскость сечения.
Пример 1
Самый простой случай – когда точки лежат на трёх смежных рёбрах пирамиды – не нуждается в разборе.
Основной метод, который используется при построении сечений, называется методом следов.
Следом называется прямая, по которой плоскость сечения пересекает плоскость любой из граней многогранника. Если такой след найден, то точки его пересечения с соответствующими рёбрами многогранника и будут вершинами искомого сечения.
Пример 2
Пусть теперь точки K и M лежат на боковых рёбрах пирамиды, а точка L – на стороне основания.
- Проведём в плоскости SAC прямую KL – след сечения в этой плоскости.
- Отметим точку P пересечения KL с SC.
- Проведём прямую PM – след сечения в плоскости SBC, – и отметим точку пересечения PM и BC.
- Все четыре вершины сечения получены – строим сечение.
Пример 3
Несколько труднее случай, когда одна из точек лежит на ребре, а две другие - на гранях пирамиды.
- Рассмотрим вспомогательную плоскостьSKM, которая пересекает рёбра AC и BC в точках E и F соответственно.
- Построим в этой плоскости прямую KM – след плоскости сечения – и отметим точку P пересечения KM с EF.
- Точка P лежит в плоскости сечения и в плоскости ABC. Но в этой же плоскости лежит и точка L. Проведём прямую PL – след сечения в плоскости ABC – и отметим точку пересечения PL с BC.
- Строим след сечения в плоскости SBC и отмечаем точку его пересечения с SC.
- Строим след сечения в плоскости SAC и отмечаем точку его пересечения с SA.
- Все четыре вершины сечения получены – строим сечение.
Использованный на первом шаге построения приём часто называют методом вспомогательных плоскостей. Рассмотрим ещё один пример, где он используется.
Пример 4
Рассмотрим теперь самый общий случай, когда все три точки K, L и M лежат на гранях пирамиды.
- Как и в предыдущем случае проведём вспомогательную плоскость CKM, которая пересекает рёбра SA и SB в точках E и F соответственно.
- Построим в этой плоскости прямую KM - след плоскости сечения – и отметим точку P пересечения KM с EF.
- Точка P, как и L, лежит в плоскости SAB, поэтому прямая PL будет следом сечения в плоскости SAB, а её точки пересечения с SA и SB – вершинами сечения.
- Теперь можно построить следы сечения в плоскостях SAC и SBC и отметить их точки пересечения с рёбрами AC и BC.
- Все четыре вершины сечения получены – строим сечение.
Пример 2’
- Проведём вспомогательную плоскость SLB и в ней отрезок LM, который принадлежит плоскости сечения.
- Проведём ещё одну вспомогательную плоскость BCK и построим точку пересечения SL и CK – точку E. Эта точка принадлежит обеим вспомогательным плоскостям.
- Отметим точку пересечения отрезков LM и EB – точку F. Точка F лежит в плоскости сечения и в плоскости BCK.
- Проведём прямую KF и отметим точку пересечения этой прямой c BC – точку N. Эта точка будет недостающей четвёртой вершиной сечения.
- Все четыре вершины сечения получены – построим сечение.
Можно использовать ту же самую идею иначе. Проведём в начале анализ построенного сечения – т.е. начнём с конца. Допустим, что по точкам K, L и M построено сечение KLMN.
Обозначим через F точку пересечения диагоналей четырёхугольника KLMN. Проведём прямую CF и обозначим через F1 точку её пересечения с гранью SAB. С другой стороны, точка F1 совпадает с точкой пересечения прямых KB и MA, исходя из чего её и можно построить.
- Проведём прямые KB и MA и отметим точку их пересечения F1.
- Проведём прямые CF1 и LM и отметим точку их пересечения F.
- Проведём прямую KF и отметим точку её пересечения с ребром CB – точку N. Эта точка будет недостающей четвёртой вершиной сечения.
- Все четыре вершины сечения получены – построим сечение.
Использованный в этом решении приём называют методом внутреннего проектирования. Построим с его помощью сечение из примера 4, когда все три точки лежат на гранях пирамиды.
Пример 3’
Допустим, что сечение уже построено.
Пусть плоскость сечения пересекает ребро CB в точке P. Обозначим через F точку пересечения KM и LP. Построим центральные проекции точек K, F и M из точки C на плоскость SAB и обозначим их K1, F1 и M1. Точки K1 и M1 легко находятся, а точку F1 можно получить как точку пересечения K1M1 и LB.
- Построим центральные проекции точек K и M из точки C на плоскость SAB и обозначим их K1 и M1.
- Проведём прямые K1M1 и LB и отметим точку их пересечения F1.
- Проведём прямые CF1 и KM и отметим точку их пересечения F.
- Проведём прямую LF и отметим точку её пересечения с ребром CB – точку P. Это первая вершина искомого сечения.
- Проведём прямую PM и отметим точку её пересечения с ребром SB. Это вторая вершина сечения.
- Из второй вершины проведём прямую через точку L и найдём третью вершину сечения.
- Из третьей вершины проведём прямую через точку K и найдём четвёртую вершину сечения.
- Все четыре вершины сечения получены – построим сечение.
УПРАЖНЕНИЯ
Более сложные упражнения помечены звёздочкой.
1. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M (см. модели).
a | b | c | d |
2. Постройте сечение куба плоскостью, проходящей через точки K, L и M (см. модели).
a | b | c |
d | e |
3. На рёбрах пирамиды SABC отмечены точки K, L и M. Постройте:
(a) прямую, по которой пересекаются плоскости CSK и MLA; | (b) точку пересечения плоскостей ACM, CSK и ASL; | (c) точку пересечения плоскостей AML, CKM и SKL. |
4*. На рёбрах пирамиды SABC отмечены точки K, L, M, P, N и Q. Постройте:
(a) прямую, по которой пересекаются плоскости KLM и PNQ; | (b) точку пересечения плоскостей ALM, CNP и SKQ. |
5*. На ребре AB треугольной пирамиды SABC отмечена точка K. Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной BC и SA.
6*. На рёбрах AB и CS треугольной пирамиды SABC отмечены точки K и M. Постройте сечение пирамиды плоскостью, проходящей через точки K и M и параллельной AS.
7*. Постройте сечение треугольной пирамиды плоскостью, проходящей через точки K, L и M, лежащих в плоскостях её боковых граней (но не на самих гранях!).
8*. На плоскости проведены три луча с общим началом – a, b и с – и отмечены три точки – A, B и C. Постройте треугольник, вершины которого лежат на этих лучах, а стороны проходят через точки A, B и C.
В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения пирамиды. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.
Определение пирамиды
Пирамида – это геометрическая фигура в пространстве; многогранник, который состоит из основания и боковых граней (с общей вершиной), количество которых зависит от количества углов основания.
Примечание: пирамида – это частный случай конуса.
Элементы пирамиды
Для рисунка выше:
- Основание (четырехугольник ABCD) – грань фигуры, являющая многогранником. Ей не принадлежит вершина.
- Вершина пирамиды (точкаE) – общая точка всех боковых граней.
Развёртка пирамиды – фигура, полученная при “разрезе” пирамиды, т.е. при совмещении всех ее граней в плоскости одной из них. Для правильной четырехугольной пирамиды развертка в плоскости основания выглядит следующим образом.
Примечание: свойства пирамиды представлены в отдельной публикации.
Виды сечения пирамиды
1. Диагональное сечение – секущая плоскость проходит через вершину фигуры и диагональ основания. У четырехугольной пирамиды таких сечения два (по одному на каждую диагональ):
2. Если секущая плоскость параллельна основанию пирамиды, она делит ее на две фигуры: подобную пирамиду (считая от вершины) и усеченную пирамиду (считая от основания). Сечением является подобный основанию многоугольник.
На данном рисунке:
Примечание: Существуют и другие виды сечения, но они не так распространены.
Виды пирамид
- Правильная пирамида – основанием фигуры является правильный многоугольник, а ее вершина проецируется в центр основания. Может быть треугольной, четырехугольной (на рисунке ниже), пятиугольной, шестиугольной и т.д.
- Пирамида с боковым ребром, перпендикулярным основанию – одно из боковых ребер фигуры расположено под прямым углом к плоскости основания. В этом случае данное ребро является высотой пирамиды.
- Усеченная пирамида – часть пирамиды, оставшаяся между ее основанием и параллельной этому основанию секущей плоскостью.
- Тетраэдр – это треугольная пирамида, гранями которой являются 4 треугольника, каждый из которых может быть принят за основание. Является правильным (как на рисунке ниже) – если все ребра равны, т.е. все грани – это равносторонние треугольники.
В сечении пирамиды плоскостью получается многоугольник. Количество сторон многоугольника зависит от того, сколько ребер пирамиды пересекает секущая плоскость. Построение многоугольника начинается с определения координат всех его вершин. Рассмотрим пример построения сечения пирамиды, в основании которой лежит правильный шестиугольник (рис. 2.35).
Рис. 2.35. Сечение пирамиды
Алгоритм построения сечения пирамиды, в основании которой лежит правильный шестиугольник'.
Читайте также: