Как сделать напор воздуха
Принципы, на которых работает вентиляция
Есть два типа вентиляции: естественная и принудительная. Всегда необходимо стремится к созданию естественной, так как она не создает дополнительный шум и не зависит от наличия электроэнергии. Принудительную вентиляцию с помощью электромеханических вентиляторов используют в тех случаях, когда не удается организовать естественную. В основном, вентилятор устанавливается на выходе воздуха, например, в вытяжном вентиляционном канале. Таким образом можно усилить проветривание какай-то конкретной комнаты, например, туалета или ванной. В качестве второго варианта — можно установить приточный клапан с функцией нагнетания воздуха. В этом случае в помещении при закрытых окнах и дверях будет создаваться избыточное давление, и воздух будет равномерно уходить через все вытяжные вентиляционные каналы.
Есть три основных пункта, с помощью которых возможно организовать естественную вентиляцию внутри квартиры или дома.
- Разность давления внутри помещения и на улице. Разность давления достигается тем, что точка всасывания воздуха и точка выхода находятся на разных высотах. Поэтому атмосферное давление в этих точках будет разное. В более высокой точке давление будет меньше. А воздух всегда стремиться перемещаться из области высоко давления в область низкого давления.
Таким образом, чем больше разность высот между точками входа и удаления воздуха, тем сильнее будет тяга.
- Разница температуры внутри помещения и на улице. Теплый воздух менее плотный, чем холодный. Соответственно теплый более лёгкий и поэтому он стремиться подняться вверх. Поэтому естественная вентиляция более эффективна в зимнее время, когда на улице отрицательная температура, а в помещении положительная. В летний период, наоборот, естественная вентиляция работает недостаточно эффективно или вообще не работает. Но проблем это не создает, так как летом часто открыты окна и проветривание помещения осуществляется через них.
Также необходимо понимать, что охлаждение воздуха внутри помещения с помощью кондиционеров сильно ухудшает естественную вентиляцию. Поэтому во время использования кондиционеров необходимо чаще проветривать помещение через окна или воспользоваться принудительной вентиляцией.
- Отсутствие герметичности вентилируемого помещения. Если помещение практически герметично, то вентиляция не будет работать, даже принудительная. В таком случае при включении вытяжки в помещении будет создаваться разрежение и воздух начнет засасываться в помещение из других вытяжных вентиляционных каналов. Например, включили вытяжку в кухне, а приток пойдет из вентиляционного канала в туалете со всеми сопутствующими запахами.
Для правильной работы вентиляции требуется входное и выходное отверстие. Если из помещения выходит определённый объем воздуха, то и зайти в помещение должен точно такой же объем. В основном при строительстве домов делают вентиляционные шахты, но не делают специальных приточных отверстий. Подразумевается, что воздух будет поступать в помещение через различные неплотности в окнах и дверях.
В некоторых случаях плохая работа вытяжки в квартире или доме может быть связана не с тем, что забит вентиляционный канал или что не хватает мощности вентилятора, а с тем, что отсутствует приток свежего воздуха в помещение.
Поэтому для улучшения работы вентиляции организуют приточные отверстия в наружных стенах помещения и устанавливают в них специальные клапаны.
Организация притока свежего воздуха с помощью приточных клапанов.
Существуют разные модели клапанов, различаемые по своему функционалу и по цене. Есть простые, предназначенные только для подачи воздуха с улицы во внутрь помещения, а есть и посложнее, с функцией подогрева его подогрева в холодное время года.
Приточный вентиляционный клапан без функции подогрева лучше всего смонтировать над батареей отопления. Таким образом холодный воздух, поступая в комнату, будет смешиваться с теплым, который подымается от батареи отопления, и, следовательно, нагреваться.
Также существуют приточные клапаны, устанавливаемые на пластиковые окна. Монтаж такого клапана нужно обговаривать еще на стадии заказа окна, так как такая процедура довольно трудоёмкая. Но при наличии желания и инструмента его можно установить самостоятельно. Информацию по его установке можно найти в сети интернет.
Проверка работоспособности вентиляционной шахты
Приток свежего воздуха в помещение может быть из различных мест, а его удаление только через одну или две вентиляционных шахты.
Для проверки силы потока, который уходит из квартиры, нужно приложить лист бумаги на вытяжную решетку полностью закрыв её. При нормальном потоке воздуха бумага должна прилипнуть к решетке.
Если бумага прилипла, то вентиляция работает.
Проверка вентиляции с помощью открытого огня считается небезопасным методом. В вытяжной шахте при её неисправности может скопиться горючий газ.
Если же этого не произошло, то можно говорить о слабом потоке воздуха. Слабый поток может быть вызван двумя причинами: отсутствие нормального притока и проблемы в вытяжной шахте. Выяснить, какая из причин влияет на вентиляцию, очень легко. Достаточно открыть окна в комнате. Если бумага после этого прилипла к вытяжному отверстию, то проблема в недостаточном притоке воздуха, значит нужно организовывать дополнительный приток. Это можно сделать с помощью установки приточного клапана.
Если же при открытых окнах бумага не прилипает, то необходимо проверять вытяжную шахту. Для собственников квартир в многоквартирных домах для проверки вытяжной шахты следует обращаться в управляющую компанию.
Организация вентиляции в помещении.
Неправильно сделанная вентиляция может принести кучу проблем собственнику дома, от плохого проветривания помещений до обмерзания вентиляционных каналов в зимнее время и их постепенное разрушение. Поэтому при её организации нужно соблюдать некоторые нюансы.
Существует несколько моментов, которые обязательно нужно учитывать при проектировании и монтаже вентиляции в доме или квартире.
- Вытяжные и приточные каналы должны располагаться таким образом, чтобы проветривать максимально больший объём помещения. Для этого их следует располагать на максимальном удалении друг от друга, а этого можно достичь если их смонтировать по диагонали помещения.
- Для свободного перемещения воздушного потока между комнатами одного помещения необходимо наличие зазора в 10-15мм между межкомнатной дверью в закрытом положении и полом или наличие вентиляционных решеток внизу межкомнатных дверей. При необходимости такую решетку можно установить самостоятельно.
Организация вытяжных вентиляционных каналов в частном доме
- Согласно правилам пожарной безопасности шахта вентиляционного канала должна опираться на фундамент дома. Запрещено опирание на плиту перекрытия или другие конструкции с низкой огнестойкостью. Соблюдение данного правила позволит избежать опрокидывание шахты во время пожара.
- Принцип от чистого к грязному. Если условно разделить комнаты жилого помещения на “грязные” и “чистые”, то спальню и зал можно отнести к “чистым” комнатам, а кухню, туалет и ванную — к “грязным”. Это связано с тем, что в кухне, туалете и ванне может быть повышенная влажность воздуха и различные запахи.
Поэтому поток воздуха должен заходить в помещение в “чистых” комнатах, а выходить в “грязных”. Именно поэтому в многоквартирных домах вытяжные вентиляционные каналы всегда находятся в “грязных” комнатах. Это позволяет избежать распространение запахов по всему помещению.
- Если строиться частный двухэтажный дом, то еще на этапе проектирования такого дома нужно позаботиться о том, чтобы “грязные” помещения находились рядом или на двух этажах, но друг под другом. Это позволит снизить затраты на монтаж вытяжных вентиляционных каналов.
- Вытяжные вентиляционные каналы кухни и туалета должны быть разделены. Это позволит избежать попадания запахов из туалета в кухню и наоборот.
- Между входом и выходом вытяжного канала должно быть не менее 4м. Такое расстояние по высоте необходимо для создания разности атмосферного давления на входе и выходе, а, следовательно, для образования естественной тяги. Если это расстояние будет меньше, то можно не надеяться на хорошую работу естественной вентиляции.
- При монтаже вытяжного вентиляционного канала в частном доме его верхняя точка должна быть на полметра выше конька крыши. Это связано с тем, что во время ветра воздушный поток обтекает препятствие и создает зоны с повышенным давлением или разряженные зоны. Эти зоны непостоянные и зависят от того, куда и с какой скоростью дует ветер. Если выход канала будет находиться в такой зоне, то возможно как усиление тяги, так и её опрокидывание, то есть воздух пойдет в обратную сторону по вентиляционному каналу.
- Если в доме планируется сделать естественную вентиляцию, то лучше всего вытяжной канал смонтировать из полнотелого кирпича.
В таком решении есть свои плюсы и минусы. Основной минус такого решения – это размер. Минимальный размер канала должен быть 140х140мм, тогда при ширине кирпича в 120мм размеры получаются 380х380мм. Из-за того, что поверхность внутри канала будет не гладкой, то его сопротивление движению воздуха будет больше, чем у канала, выполненного из круглой пластиковой вентиляционной трубы. Соответственного тяга у него будет меньше, чем у канала из трубы.
Но несмотря на явные минусы есть и хорошие положительные моменты. Такой вытяжной канал из кирпича длительное время хорошо поддерживает тягу и позволяет решить проблему конденсата.
Рассмотрим, как происходит работа вытяжного кирпичного канала. Для примера, человек принимает душ и теплый воздух, насушенный водяным паром, подымается в вытяжном канале. В этот момент кирпич нагревается от теплого воздуха и частично впитывает влагу из воздуха. После того, как человек закончил принимать душ и выключил горячую воду, в вытяжку поступает уже более прохладный и сухой воздух, но теперь уже кирпичи будут отдавать свое тепло воздуху, дополнительно его нагревая. Нагрев воздуха поддерживает хорошую естественную тягу. Также в этот момент будет происходить сушка канала, так как сухой воздух будет забирать воду из кирпича.
Теперь рассмотрим, что произойдет, если установить в канал гильзу из вентиляционного пластика, оцинкованного металла или нержавейки. В этом случае изначально естественная тяга будет немного лучше, чем в вытяжном канале из кирпича. Но, в момент, когда в такой канал поступит теплый воздух насыщенный паром, а сам канал будет прохладным, возможно образование конденсата и его стекание в низ. Почему так происходит? Дело в том, что пластик и металл не впитывают влагу в отличие от кирпича и поэтому она будет конденсироваться на стенках прохладного канала. Также они не дадут кирпичам вокруг хорошо прогреться. Следовательно, в то время, когда человек закончит принимать душ, и в вытяжной канал пойдет сухой и более прохладный воздух, кирпич не сможет отдать это тепло воздуху и поддержать хорошую тягу. Это не означает, что тяга пропадет, она будет, но не такая, как могла бы быть если бы воздух дополнительно нагревался от кирпичей.
Автор канала ютюб Игорь Белецкий показал интересный опыт с созданием разрежения воздуха путем нагрева и охлаждения емкости с водой, продемонстрировав, как получить разрежение воздуха простым способом.
Не спешите выбрасывать пустые бутылки, которые накопились после праздников, с ними можно проделать один зрелищный эксперимент. Понадобится емкость с водой. Нальем немного воды в саму бутылку. Затем помещаем ее в микроволновку на полторы две минуты, чтобы довести до кипения. После аккуратно достаем, не поднимая горлышком вверх, чтобы не вышел пар.
Опускаем в емкость с водой. Если проделать все быстро, можно наблюдать обратный процесс: конденсацию пара и заполнение бутылки водой. В начале ничего не получалось. Конденсация шла как-то вяло и неинтересно. Экспериментатор менял время нагрева и количество воды из бутылки, набирал более холодную воду, но это не меняло картину.
Критическим параметром оказалась температура стекла самой бутылки. Чем оно сильнее нагреется, тем медленнее идет процесс конденсации пара. С маленькой бутылкой была совсем все плохо… Получилось все только к вечеру…
Это конечно, не вакуум. Но разрежение получается вполне приличное. А главное, просто и наглядно для понимания.
обсуждение
игорь белецкий
+enikeys4ik да, было такое первый раз, я даже на дно вазы пластик клал, что бы её не разбить, но он зараза к горлышку прилипает и не дает воде всасываться. Не все так просто сделать, как может показаться на коротком видео.
Das
+peolepol я так понял, там не набор воды в бутылку обозревается, а резкий пшик, который в ролике 2 раза получился. Что это, почему оно происходит и в чём прикол — я тоже не смог понять.
Airaleais
+ker arkad пар равномерно в бутылке остывает, и при определенной температуре начинается конденсироваться, втягивание воды ускоряет процесс конденсации, вода еще быстрее врывается в емкость, в определенный момент весь пар одновременно во всех участках падает до температуры конденсации отчего так резко всасывает воду.
ковалев лев
+ker arkad водяной пар вытеснил воздух. Когда бутылку горлом опустили в холодную воду, пар начал конденсироваться, а воздуха в бутылке уже почти нет. Тем самым в бутылке резко падает давление, и внешнее атмосферное давление заталкивает воду в бутылку.
maxim tepluk
была мысль попробовать достичь хорошего вакуума в герметичной посудине за счет химических реакций. Например, вакуумируемый сосуд продуть кислородом, вытеснив из него воздух. Затем герметизировать. И окончательным этапом перевести содержащийся в закрытом сосуде кислород в твердое вещество какого-либо оксида, может быть металла. Например, сжечь электрическим током заранее помещенную в сосуд проволочную спираль.
Mrdeltik
ура, с первого раза получилось! Правда когда пшик случился. Брал бутылку из под водки перепёлка, 0. 7л. Наливал так, чтоб лёжа не выливалось. Время нагрева-3 минуты на макс мощности.
Иван иванович
никакого глубокого вакуума тут не будет, даже близко! Вводите людей в заблуждение. Но интерес повышается у народа к подобным опытам.
Это уже хорошо.
Steppeez
ну, водно-парового вакуума такой глубины не хватит, чтоб даже зажечь в нём тлеющий электрический разряд. И ещё в этом видео не видно, что вода (это даже не тонкодисперсная пыль снежных кристаллов) фонтанирует в объём бутылки не через доведённую до совершенства форсунку и без тонкодисперсного распыления хладагента в объёме бутылки, т. Е. Не так, как это устроено в рабочих камерах вакуумных паро-дышащих тепловых машин.
sergey familiy
если объединить паровой двигатель с вакуум двигателем в одной конструкции и запитать от солнечного концентратора или еще лучше от каталитического горения. Я думаю получится очень занимательное видео.
Безопасная любознательность — быстрый прогресс!
Безграмотная любознательность — в лучшем случае быстрая смерть!
Правильно говорят: «страшен не дурак, а дурак с инициативой!
Спасибо вам большое за понимание и быструю реакцию! Несчастный случай может произойти в любую минуту. Ютуб работает круглосуточно! Автор спит, а дети шумною гурьбою в припрыжку скачут на тот свет! Помни об этом! Пожалуйста! Это не шутки! Я знаю о чем говорю! Я инвалид труда! И на страницах техники безопасности 2, 5 литра моей крови!
Анатолий пархоменко
это что же значит, когда идет дождь — разрежение? Или в даном случае пар заменил воздух и выпав в конденсат потащил за собой жидкость? Пар полностью вытеснул воздух и давление пара меньше чем воздуха разность давлений втискивает в бутылку воду! Круто!
ivan88587
нет не именно воздух не втягивает воду т к воздух — это не пар, он при охлаждении не конденсируется и не создаёт вакуум. Пар же, тяжелее воздуха и вытесняет его в любой кипящей ёмкости а потом, если ёмкость закрыть, конденсируясь в воду, образует вакуум.
gustafa111
из этой серии: берем 200л бочку (от растворителя например), заливаем воды, кипятим, (можно сразу пара туда нагнать, так проще) и даем остыть (при закрытой крышке! ), Важно при этом её не трогать, пока не остынет) потом бросаем в неё камень и она схлопывается, (разрывая при этом ткань мироздания, образуя черную дыру, котоаря поглотит землю). Кстати, весьма зрелищно
Игорь белецкий
+макс морозов потому что нет школьников которые чаще смотрят и помногу. Размещайте ссылку на это видео в соцсетях, помогите мне раскрутить канал и делать более крутые эксперименты, это все в ваших руках!
Smdfb
игорь, вы наверное видели кучу роликов в интернете по поводу бесконечной энергии(типо как берут сетевой фильтр и у него вечно горит лампочка). Как вы считаете как данные пранки делают? Все что мне приходит в голову это только электро-магнитная индукция. Где-то неподалеку должен быть источник который создает переменное электро-магнитное поле. Так ли это?
Игорь белецкий
+ден а конечно не покажут и не показывали никому, потому что как они бутылку то с водой нагреют быстро без микроволновки, это железную банку можно нагреть, но тогда не увидишь всей красоты процесса.
Игорь белецкий
+азпука куса годноту делать долго и сложно, попробуй сам хоть что нибудь сделать, а пока делаются сложные эксперименты надо было что то выложить, что бы люди не забывали, неужели сложно догадаться самому.
Азпука куса
+игорь белецкий (investigator) если делать достаточно сложный эксперимент, то аудиторию, это больше привлечет, соответственно все окупится. Ждем от тебя крутых эксперементов
игорь белецкий
+азпука куса я это прекрасно понимаю и готовлю сейчас сразу два таких эксперимента, но пока их доведешь до нормального вида проходит много времени, не выложил хотя бы один ролик в неделю и все — роста канала не жди.
Игорь белецкий
+hofrin rus да это школьная физика, но ты ведь не хочешь сказать, что тебе или вообще кому либо из нас показывали такое в школе раньше или тем более сегодня.
Андрей рыбин
эффект объяснен недостаточно хорошо, т. Е. В результате чего возникает разрежение в бутылке? В результате того, что нагревается вода, а от соприкосновения с ней нагревается воздух, затем расширяется и вытесняется из бутылки?
Петрогор
+андрей рыбин чтобы понять, нужно обратить внимание на то, чем водяной пар отличается от воздуха. Пар, при закипании воды, вытесняет из бутылки весь воздух и в бутылке фактически воздуха почти не остаётся. В бутылке только вода в газообразном состоянии. При переходе воды из газообразного состояния в жидкий возникает разрежение.
Получанкин михаил
чего то я спросони не понял, как это получается а если нагреть бутылку в масле до 120″ и сделать тоже самое? Лопнет наверно. Я пока не проснулся, но что- то мне кажется, чтоб образовался пар нужна горячая сухая поверхность. А на видео вы спешите слить воду, пока бутылек смочен вода плавно подымается, и когда доходит до сухой поверхности образуется пар.
Аквадевайс
теперь можешь делать поршневой паровой вакуумный двигатель. Кпд будет намного больше, чем у обычного паровоза. А если рабочая жидкость будет не вода, а легкокипящая, то можно использовать природную разность температур.
Игорь белецкий
+scwobu если есть такой эффект то использование всегда найдется. Например та же присоска(прикрепить что то быстро на гладкую поверхность), или примитивный насос что бы что то быстро откачать, и т.д.
Format128
а я
дерная электростанция стоит, например, миллиард. Но если каждый день пару миллилнов человек платит по 2 рубля каждый, то это окупается. А какой процент юзает панели солнечные? Вот и не получиться их дешево продавать
trapwalker
можно сделать эффективный вакуумный насос для откачки воздуха в больших объёмах. Нужно провести в прочную ёмкость тонкую трубку от парогенератора, соосные вентили перекрывают трубку подачи пара и переключают объём ёмкости на откачиваемый контур. После этого ёмкость нужно охладить до конденсации и переключить вентили обратно. Установка легко масштабируется вдвое установкой аналогичной ёмкости с вентилями в противофазе.
trapwalker
+николай пшонников в моём описании не предусмотрен никакой поршень. Поршень, цилиндр, уплотнительные кольца — это как раз то, что очень трудно добыть в бытовых условиях. А вот пластиковые трубы, фетинги любых диаметров и шаровые вентили в любом строительном магазине продаются очень недорого и легко монтируются без особых навыков.
Trapwalker
+bang bang. Я че-то не понял, если это не вопрос, то. Почему? Объясните. Если же вопрос, то. Хз. Это довольно бесполезно. Я люблю генерить идеи, это моё хобби, но идеи эти дальше идей никуда не идут (по большей части), ибо дальше уже не моё хобби (по большей части.
Jwserge
охренеть
прямо открытия сделал для себя
спс.
Игорь белецкий
+jwserge я видел ролики как схлопываются таким образом алюминиевые банки и даже большие бочки, а вот что бы туда вода залетала ещё не видел, вот и решил попробовать.
Alexei belousov
чет не понял, там все таки воздух есть во время окунания горлышка бутылки в воду. А вот куда он потом девается? В воде растворяется что ли? Не понятно в общем.
Glukmaker
18 грамм воды в газообразном состоянии при атмосферном давлении занимает объем 22, 4 литра
так что, чтобы заполнить поллитровую бутылку паром нужно около 1/3 куб см воды. Поэтому если пар вытеснил весь воздух из бутылки, и ее сразу закупорить, то разрежение там возникнет порядочное.
Andrey sc
+nradrus нет. Максимальное давление, которое можно так достичь равно давлению насыщенного водяного пара при температуре эксперимента. Даже при нуле по цельсию оно составляет около 600 паскаль, что много для ламп.
Id13
+andrey sem
, можно и чем-нибудь, что активируется уже выше температуры кипения воды при имеющемся давлении. Т. Е. Сначала закупоривание со 100% парами воды и запасом реагентов и конструкцией (радиолампа например), затем уже прокалка для активации хим-вещества, поглощающего воду.
По техзаданию необходимо обеспечить подпор воздуха в помещении. Для этого системами вентиляции создается разница между объемами приточного и удаляемого воздуха. Какой должна быть эта разница, как ее рассчитать (определить) при известном объеме помещения.
Я тебе как-то скидывал СП по дымоудалению и т.д. Вот к СНиП-у, на базе которого этот СП сделан есть методика расчетов.
Эта методика устарела, надо рассчитывать противодымную вентиляцию по: "Расчетное определение основных параметров противодымной вентиляции зданий: Метод. рекомендации. М., ВНИИПО"
Но в вашем случае возможно в ТЗ описан случай с "грязными" помещениями, тогда в помещениях вытяжка будет больше притока, а подпор будет осуществляться через коридор, как правило - это 1 крат.
Заказчик предлагает определять подпор воздуха в помещении из расчета примерно 250 м3/ч на каждую дверь в помещении.
Прав ли заказчик и откуда такая цифра - примерно 250 м3/ч на одну дверь.
Рекомендую посмотреть ГОСТ Р ЕН 13779-2007.
Там есть описание градации помещений с подпором - их несколько вариантов.
А что касается расходов - если дверь открытая - для обеспечения 20Па требуется скорость 1,3м/с через проем.
Если закрыта - в зависимости от.
Thượng Tá Quân Đội Nhân Dân Việt Nam
Заказчик предлагает определять подпор воздуха в помещении из расчета примерно 250 м3/ч на каждую дверь в помещении.
Прав ли заказчик и откуда такая цифра - примерно 250 м3/ч на одну дверь.
7.4.3 Расход воздуха, подаваемого в тамбур-шлюзы в соответствии с 7.1.6 и 7.2.15, следует принимать из расчета создания и поддержания в них избыточного давления 20 Па при закрытых дверях (по отношению к давлению в помещении, для которого предназначен тамбур-шлюз), но не менее 250 м3/ч. |
Сам расчет подпора для тамбур-шлюзов есть в Пособии 1.91 к СНиП 2.04.05-91. Однако это относится именно к тамбур-шлюзам, которые и делаются для предотвращения перетекания воздуха. Там только двери и могут быть небольшие щели.
Расчета "по нормам" подпора для произвольного помещения нет. Хотя встречал зарубежные методики. Они в принципе примерно такие же, как в Пособии, но в помещении может быть и много окон, дверей, неплотностей, вытяжных систем. Рассчитать, какое будет давление внутри практически невозможно. Потому у нас и нормируется избыточное давление только в шлюзах и других местах, требующих подпора при противодымной вентиляции. Обычно, просто по практике, для создания подпора делают дисбаланс между притоком и вытяжкой порядка 2-х кратностей.
Если хочется досконально разобраться, идите на форум АВОК, там на эту тему сотни тем, в том числе по электропомещениям.
В свое время для серверной, расположенной в грязном цеху написал в ТЗ, чтобы проектировщики обеспечили в ней избыточное давление, чтобы пыль не сосало внутрь. А чтобы притока не было и вытяжки совсем.
Для проектировщиков это оказалось неразрешимой задачей, так как расход они обеспечить могут, а разницу давлений - нет.
По-моему, просто все - дифманометр с выходом 4-20мА и частотник, который держал бы нужный напор. Но в СП такого нет.
Thượng Tá Quân Đội Nhân Dân Việt Nam
В свое время для серверной, расположенной в грязном цеху написал в ТЗ, чтобы проектировщики обеспечили в ней избыточное давление, чтобы пыль не сосало внутрь. А чтобы притока не было и вытяжки совсем.
Для проектировщиков это оказалось неразрешимой задачей, так как расход они обеспечить могут, а разницу давлений - нет.
По-моему, просто все - дифманометр с выходом 4-20мА и частотник, который держал бы нужный напор. Но в СП такого нет.
Разницу давлений действительно обеспечить практически невозможно. Вот нормируется 20 Па, а ведь это всего 2 мм. вод. ст. Или 2 кг/м2. Это даже на жидкостном манометре уловить трудно. Поддерживать такую разность автоматикой практически невозможно из-за чувствительности приборов и инерционности системы. А где в помещении измерять давление? Это в воздуховод можно вставить трубки, подключить цифровой дифманометр и фиксировать разность давлений в конкретных точках. А в помещении по всему объему давления разные и на 2 мм уж точно различаются.
Такое динамическое давление возникает при скорости движения воздуха в помещении 0.6 м/с. Любые случайные подвижки воздуха приведут к ошибкам. Давление воздуха в помещении непрерывно изменяется в зависимости от скорости и направления ветра и разности температур наружного и внутреннего воздуха.
Поэтому и делают тамбур-шлюзы, в которых легче поддержать подпор. Расход 250 м3/ч на типовой тамбур определен экспериментально и проверен жизнью. Обычно его и принимают безо всяких расчетов. В больших тамбурах с воротами расход на подпор уже составляет несколько тысяч кубов.
Высокое давление создать и поддерживать проще, но большими объемами воздуха. Вот только тогда двери открыть или закрыть мускульной силой будет невозможно.
Online расчет
приточной установки
Теперь, зная из каких компонентов состоит система вентиляции, мы можем приступить к ее комплектации. В этом разделе мы расскажем о том, как рассчитать приточную вентиляцию для объекта площадью до 300–400 м² — квартиры, небольшого офиса или коттеджа. Естественная вытяжная вентиляция на таких объектах обычно уже установлена на этапе строительства, поэтому рассчитывать ее не требуется. Следует отметить, что в квартирах и коттеджах вытяжная вентиляция обычно проектируется из расчета однократного воздухообмена, в то время как приточная обеспечивает, в среднем, двукратный воздухообмен. Это не является проблемой, поскольку часть приточного воздуха будет удаляться через неплотности в окнах и дверях, не создавая избыточной нагрузки на вытяжную систему. В нашей практике мы никогда не сталкивались с требованием службы эксплуатации многоквартирного здания ограничить производительность приточной системы вентиляции (в то же время установка вытяжных вентиляторов в каналы вытяжной вентиляции часто бывает запрещена). Если же вы не хотите разбираться в методике расчета и формулах, то можете воспользоваться Калькулятором, который выполнит все необходимые расчеты.
Производительность по воздуху
Расчет системы вентиляции начинается с определения производительности по воздуху (воздухообмена), измеряемой в кубометрах в час. Для расчетов нам потребуется план объекта, где указаны наименования (назначения) и площади всех помещений.
Для каждого жилого помещения определяется количество подаваемого воздуха. Расчет обычно ведется в соответствии со и МГСН . Поскольку СНиП задает более жесткие требования, то в расчетах мы будем ориентироваться на этот документ. В нем говорится, что для жилых помещений без естественного проветривания (то есть там, где окна не открывают) расход воздуха должен составлять не менее 60 м³/ч на человека. Для спален иногда используют меньшее значение — 30 м³/ч на человека, поскольку в состоянии сна человек потребляет меньше кислорода (это допустимо по МГСН, а также по СНиП для помещений с естественным проветриванием). При расчете учитываются только люди, находящиеся в помещении длительное время. Например, если у вас в гостиной пару раз в году собирается большая компания, то увеличивать производительность вентиляции них не нужно. Если же вы хотите, чтобы гости чувствовали себя комфортно, можно установить , которая позволяет регулировать расход воздуха раздельно в каждом помещении. С такой системой вы сможете увеличить воздухообмен в гостиной за счет его снижения в спальне и других помещениях.
После расчета воздухообмена по людям нам нужно рассчитать воздухообмен по кратности (этот параметр показывает, сколько раз в течение одного часа в помещении происходит полная смена воздуха). Чтобы воздух в помещении не застаивался, нужно обеспечить хотя бы однократный воздухообмен.
-
Расчет воздухообмена по количеству людей:
- в состоянии покоя (сна) 30 м³/ч;
- типовое значение (по СНиП) 60 м³/ч;
Рассчитав необходимый воздухообмен для каждого обслуживаемого помещения, и сложив полученные значения, мы узнаем общую производительность системы вентиляции. Для справки типовые значения производительности вентиляционных систем:
- Для отдельных комнат и квартир от 100 до 500 м³/ч;
- Для коттеджей от 500 до 2000 м³/ч;
- Для офисов от 1000 до 10000 м³/ч.
Расчет воздухораспределительной сети
После определения производительности вентиляции можно переходить к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов), и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Схему составляют таким образом, чтобы при минимальной общей длине трассы система вентиляции могла подавать расчетное количество воздуха во все обслуживаемые помещения. Далее по этой схеме рассчитывают размеры воздуховодов и подбирают воздухораспределители.
Расчет размеров воздуховодов
Для расчета размеров (площади сечения) воздуховодов нам нужно знать объем воздуха, проходящий через воздуховод в единицу времени, а также максимально допустимую скорость воздуха в канале. При увеличении скорости воздуха размеры воздуховодов уменьшаются, но уровень шума и сопротивление сети возрастают. На практике для квартир и коттеджей скорость воздуха в воздуховодах ограничивают на уровне 3–4 , поскольку при более высоких скоростях воздуха шум от его движения в воздуховодах и распределителях может стать слишком заметным.
Итак, расчетная площадь сечения воздуховода определяется по формуле:
Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.
Фактическая площадь сечения воздуховода определяется по формуле:
В таблице приведены данные по расходу воздуха в круглых и прямоугольных воздуховодах при разных скоростях движения воздуха.
Параметры воздуховодов | Расход воздуха (м³/ч) при скорости воздуха: | ||||||
Диаметр круглого воздуховода | Размеры прямоугольного воздуховода | Площадь сечения воздуховода | 2 м/с | 3 м/с | 4 м/с | 5 м/с | 6 м/с |
80×90 мм | 72 см² | 52 | 78 | 104 | 130 | 156 | |
Ø 100 мм | 63×125 мм | 79 см² | 57 | 85 | 113 | 142 | 170 |
63×140 мм | 88 см² | 63 | 95 | 127 | 159 | 190 | |
Ø 110 мм | 90×100 мм | 90 см² | 65 | 97 | 130 | 162 | 194 |
80×140 мм | 112 см² | 81 | 121 | 161 | 202 | 242 | |
Ø 125 мм | 100×125 мм | 125 см² | 90 | 135 | 180 | 225 | 270 |
100×140 мм | 140 см² | 101 | 151 | 202 | 252 | 302 | |
Ø 140 мм | 125×125 мм | 156 см² | 112 | 169 | 225 | 281 | 337 |
90×200 мм | 180 см² | 130 | 194 | 259 | 324 | 389 | |
Ø 160 мм | 100×200 мм | 200 см² | 144 | 216 | 288 | 360 | 432 |
90×250 мм | 225 см² | 162 | 243 | 324 | 405 | 486 | |
Ø 180 мм | 160×160 мм | 256 см² | 184 | 276 | 369 | 461 | 553 |
90×315 мм | 283 см² | 204 | 306 | 408 | 510 | 612 | |
Ø 200 мм | 100×315 мм | 315 см² | 227 | 340 | 454 | 567 | 680 |
100×355 мм | 355 см² | 256 | 383 | 511 | 639 | 767 | |
Ø 225 мм | 160×250 мм | 400 см² | 288 | 432 | 576 | 720 | 864 |
125×355 мм | 443 см² | 319 | 479 | 639 | 799 | 958 | |
Ø 250 мм | 125×400 мм | 500 см² | 360 | 540 | 720 | 900 | 1080 |
200×315 мм | 630 см² | 454 | 680 | 907 | 1134 | 1361 | |
Ø 300 мм | 200×355 мм | 710 см² | 511 | 767 | 1022 | 1278 | 1533 |
160×450 мм | 720 см² | 518 | 778 | 1037 | 1296 | 1555 | |
Ø 315 мм | 250×315 мм | 787 см² | 567 | 850 | 1134 | 1417 | 1701 |
250×355 мм | 887 см² | 639 | 958 | 1278 | 1597 | 1917 | |
Ø 350 мм | 200×500 мм | 1000 см² | 720 | 1080 | 1440 | 1800 | 2160 |
250×450 мм | 1125 см² | 810 | 1215 | 1620 | 2025 | 2430 | |
Ø 400 мм | 250×500 мм | 1250 см² | 900 | 1350 | 1800 | 2250 | 2700 |
Расчет размеров воздуховода производится отдельно для каждой ветки, начиная с магистрального канала, к которому подключается вентустановка. Отметим, что скорость воздуха на ее выходе может достигать 6–8 , поскольку размеры присоединительного фланца вентустановки ограничены размером ее корпуса (шум, возникающий внутри нее, гасится шумоглушителем). Для уменьшения скорости воздуха и снижения уровня шума размеры магистрального воздуховода часто выбирают больше размеров фланца вентустановки. В этом случае подключение магистрального воздуховода к вентустановке производится через переходник.
В бытовых системах вентиляции обычно используются круглые воздуховоды диаметром от 100 до 250 мм или прямоугольные эквивалентного сечения.
Выбор воздухораспределителей
Зная расход воздуха можно подобрать по каталогу воздухораспределители с учетом соотношения их размеров и уровня шума (площадь сечения воздухораспределителя, как правило, в 1,5–2 раза больше площади сечения воздуховода). Для примера рассмотрим параметры популярных воздухораспределительных решеток Арктос серий АМН, АДН, АМР, АДР:
В каталоге указываются их размеры (колонка A x B) и площадь сечения (F0), а также параметры при заданных расходах воздуха (колонки L0). С увеличением расхода воздуха возрастает уровень шума (Lwa) и падение давления (ΔPп), а также увеличивается дальнобойность воздушной струи. В соответствующих колонках указывается расстояние от решетки, на котором скорость потока воздуха Vx будет равна 0,2 или 0,5 . Для жилых помещений подбор решеток обычно ведется по колонкам с уровнем шума до 25 дБ(А), в офисах обычно допустим уровень шума до 35 дБ(А).
Для того, чтобы фактические параметры решетки соответствовали тем, что указаны в каталоге, необходимо обеспечить равномерное распределение воздуха по всей ее площади. Для этого желательно использовать камеру статического давления или адаптер с боковым подключением, в котором поток воздуха перед попаданием на решетку поворачивает под прямым углом.
В бытовых системах вентиляции обычно используют распределительные решетки размером от 100×100 мм до 400×200 мм или круглые диффузоры эквивалентного сечения.
Расчет сопротивления сети
В процессе движения воздуха по воздуховодам, адаптерам, распределителям и всем остальным элементам сети, он испытывает сопротивление движению. Чтобы преодолеть это сопротивление и сохранить требуемый расход воздуха, вентилятор должен создавать определенное давление, измеряемое в Паскалях (Па). Чем больше будет падение давление в воздухораспределительной сети, тем ниже станет фактическая производительность вентилятора. Зависимость производительности вентилятора или вентустановки от сопротивления (полного давления) воздухопроводной сети задается в виде графика, который называется вентиляционная характеристика. Подробнее об этом параметре мы расскажем ниже.
- 75–100 Па для квартир площадью от 50 до 150 м².
- 100–150 Па для коттеджей площадью от 150 до 350 м².
Сопротивление сети слабо зависит от количества обслуживаемых помещений и определяется протяженностью и конфигурацией самого длинного пути от входа (воздухозаборной решетки) до выхода (воздухораспределителя). Отметим, что приведенные значения справедливы только для систем вентиляции на базе вентиляционной установки, но не наборной системы, поскольку нам не нужно учитывать падение давления на калорифере, фильтре грубой очистки, воздушном клапане и других элементах вентустановки (ее вентиляционная характеристика строится уже с учетом сопротивления всех этих элементов).
Мощность калорифера
После определения производительности вентиляции мы можем рассчитать требуемую мощность калорифера. Для этого нам понадобятся значения температуры воздуха на выходе системы и минимальной температуры наружного воздуха в холодный период года. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны и для Москвы принимается равной -26°С. Таким образом, при включении калорифера на полную мощность, он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, можно использовать калорифер меньшей мощности, при условии, что система вентиляции имеет регулировку производительности: это позволит в холодный период поддерживать комфортную температуру воздуха за счет снижения скорости вентилятора.
Мощность калорифера рассчитывается по формуле:
После расчета мощности калорифера нужно выбрать напряжение питания (для электрического калорифера): 220В / 1 фаза или 380В / 3 фазы. При мощности калорифера свыше 4–5 кВт желательно использовать фазное подключение. Максимальный ток, потребляемый калорифером, можно рассчитать по формуле:
Типичные значения мощности калорифера — от 1 до 5 кВт для квартир и от 5 до 50 кВт для офисов и коттеджей. При высокой расчетной мощности лучше устанавливать водяной калорифер, который использует в качестве источника тепла воду из системы центрального или автономного отопления.
Расчет потребляемой электроэнергии
Для систем вентиляции с электрическим калорифером основные затраты электроэнергии приходятся на нагрев холодного приточного воздуха. Чтобы понять, сколько же придется платить за электроэнергию, недостаточно знать только мощность калорифера, ведь с максимальной мощностью калорифер будет работать непродолжительное время, только в период сильных морозов. При повышении температуры наружного воздуха потребляемая мощность уменьшается (все приточные установки автоматически регулируют мощность калорифера для поддержания на выходе заданной температуры), поэтому средняя потребляемая мощность будет заметно ниже максимальной.
Чтобы оценить затраты энергии на нагрев воздуха в течение всего года нужно знать средние температуры воздуха по месяцам (для двухтарифного счетчика потребуются отдельно дневные и ночные температуры). По этим данным можно рассчитать стоимость потребляемой энергии:
ΔTday и ΔTnight — дневной и ночной перепад температур, °С. Рассчитывается отдельно для каждого месяца как разность заданной температуры на выходе калорифера (обычно ) и среднемесячной дневной или ночной температуры воздуха.
PRday и PRnight — дневная и ночная стоимость электроэнергии, рублей за кВт·ч. Эта стоимость умножается на длительность действия (в часах) дневного и ночного тарифов, для Москвы на 16 и 8 соответственно.
В калькуляторе по этой формуле рассчитывается стоимость электроэнергии, затраченной на нагрев воздуха в период с сентября по май. Информация о среднемесячной дневной и ночной температуре воздуха взята из сервиса Яндекс.Погода, тарифы на электроэнергию указаны на 1 июля 2012 для квартир с электроплитами. Фактическая стоимость электроэнергии, разумеется, будет немного иной, поскольку температура воздуха может отличаться от средней в ту или другую сторону, тем не менее полученный результат позволит нам достаточно точно оценить уровень затрат на эксплуатацию системы вентиляции.
Для снижения стоимости эксплуатации можно использовать , которая позволяет снизить расчетную мощность калорифера на 20–30%, а среднее потребление энергии на 30–50%. При этом увеличение стоимости оборудования составит всего 15–20%, что позволит полностью окупить это удорожание за один год. Подробнее о таких системах вентиляции можно прочитать статье .
Выбор приточной установки
Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел Расчет сопротивления сети).
Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.
Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².
Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.
Нужно ли ориентироваться на СНиП?
Во всех расчетах, которые мы проводили, использовались рекомендации СНиП и МГСН. Эта нормативная документация позволяет определить минимально допустимую производительность вентиляции, обеспечивающую комфортное пребывание людей в помещении. Другими словами требования СНиП направлены в первую очередь на минимизацию стоимости системы вентиляции и затрат на ее эксплуатацию, что актуально при проектировании вентсистем для административных и общественных зданий.
В квартирах и коттеджах ситуация иная, ведь вы проектируете вентиляцию для себя, а не для усредненного жителя и вас никто не заставляет придерживаться рекомендаций СНиП. По этой причине производительность системы может быть как выше расчетного значения (для большего комфорта), так и ниже (для уменьшения энергопотребления и стоимости системы). К тому же субъективное ощущение комфорта у всех разное: достаточно 30–40 м³/ч на человека, а для будет мало и 60 м³/ч.
Однако если вы не знаете, какой воздухообмен вам нужен для комфортного самочувствия, лучше придерживаться рекомендаций СНиП. Поскольку современные приточные установки позволяют регулировать производительность с пульта управления, вы сможете найти компромисс между комфортом и экономией уже в процессе эксплуатации системы вентиляции.
Уровень шума системы вентиляции
Проектирование системы вентиляции
Для точного расчета параметров системы вентиляции и разработки проекта обращайтесь в Проектный отдел. Вы также можете рассчитать с помощью калькулятора ориентировочную стоимость системы вентиляции частного дома.
Вопрос, который рано или поздно встает перед любым владельцем ПК, — охлаждение. Перегрев комплектующих вызывает снижение производительности, а в худшем случае дело заканчивается деградацией процессора и отвалом чипов. И наоборот — бездумное обвешивание корпуса вентиляторами может превратить его в настоящий пылесос, который будет раздражать домочадцев своим гулом.
Качество работы системы вентиляции зависит от типа и количества вентиляторов, способа подключения их к материнской плате и правильного расположения в корпусе компьютера. Впрочем, обо всем по порядку.
Основные характеристики вентиляторов
Статическое давление — напор воздуха, создаваемый вентилятором. Зависит от его конструкции и скорости вращения крыльчатки. Чем выше этот показатель, тем лучше работает вентилятор в условиях большого сопротивления (например, при прокачке воздуха через мелкоячеистый радиатор).
Воздушный поток (CFM) — количество прокачиваемого воздуха. Исторически сложившиеся единицы измерения — кубические футы в минуту. Эффективную работу показывают устройства с CFM больше 50.
Скорость вращения (RPM) — количество оборотов в минуту. Чем больше, тем выше производительность (и шум). У большинства моделей не превышает 2000.
Широтно-импульсная модуляция (ШИМ, или PWM) — автоматическая регулировка оборотов вентилятора с помощью материнской платы. Требует разъема 4 pin. Провести точную настройку можно с помощью специальных фирменных утилит.
ASUS Fan Expert
Толщина вентилятора — обычно составляет около 25 мм. Для небольших корпусов (HTPC) выпускаются более тонкие версии, однако их эффективность ниже ввиду более слабого статического давления и CFM.
Тип подшипника — важная характеристика, от которой зависит ресурс и уровень создаваемого шума. В современных моделях можно встретить несколько видов: от самого дешевого подшипника скольжения (с низким ресурсом) до самых дорогих и редких керамического подшипника качения и подшипника с магнитным центрированием. Золотой серединой по ресурсу, цене и шуму являются вертушки с гидродинамическим подшипником.
Уровень шума — измеряется в дБА. Значение, комфортное для человеческого уха, не должно превышать 30 дБА. Больше вентиляторов — не значит шумнее. Чаще всего дело обстоит наоборот, особенно если вентиляторами управляет материнская плата, контролирующая температуру компонентов.
- 0–25 дБА — бесшумный ПК;
- 25–35 дБА — шум на уровне дневного фонового;
- 35–40 дБА — ощутимый уровень шума (можно снизить, переместив компьютер под стол);
- 40 дБА и выше — громкий и некомфортный уровень шума.
Размер имеет значение
От размера вентилятора зависит его производительность и уровень шума. Чем больше диаметр, тем меньше нужно сделать оборотов для достижения нужного эффекта и тем тише он работает. Чаще всего рядовому пользователю приходится иметь дело с вентиляторами следующих типоразмеров:
92 х 92 мм — уходящий формат, которому производители корпусов уделяют все меньше внимания. По стоимости сравнимы с более эффективными вентиляторами большего размера.
120 х 120 мм — дешево и сердито. Самые распространенные и универсальные. Хороший четырехпиновый вариант можно купить в пределах 1000 рублей.
140 х 140 мм — идеальный, по мнению автора, баланс шума и производительности. Цена за приличную модель стартует от 1000 рублей.
200 х 200 мм — решение редкое, но довольно эффективное в плане охлаждения и тишины. Главная проблема — найти замену в случае поломки. Второй спорный момент — стоимость, которая у именитых производителей начинается от четырех тысяч рублей.
Отдельные производители встраивают в свои корпуса настоящих монстров.
Стоит понимать, что выбор корпуса с вентиляторами редких размеров в случае их поломки может обернуться некоторыми проблемами. Если же корпус рассчитан на стандартные 120/140-миллиметровые вертушки, возместить потерю будет проще и быстрее. Как показывает практика, хорошие 140-миллиметровые вентиляторы при 600–800 об/мин или 120-миллимитровые на 800–1000 оборотах обеспечат хороший результат и максимальный акустический комфорт.
Варианты подключения вентиляторов к материнской плате. Типы разъемов
Современные вентиляторы подключаются к материнской плате посредством 3- или 4-пинового разъема. От типа подключения будет зависеть возможность управления скоростью вентиляторов программным способом. Более экзотическими являются 2-пиновый разъем (обычно используется в БП) и 6-пиновый (с управлением подсветкой). Подключение вентиляторов напрямую к блоку питания через Molex считается устаревшим.
У 3-пиновых моделей скорость вращения зависит от изменения напряжения. Возможен мониторинг скорости, однако ШИМ отсутствует. Часто такие вентиляторы работают на повышенных оборотах и издают больше шума.
У 4-пиновых моделей скорость вращения регулируется материнской платой с помощью дополнительного провода. Современные BIOSы прекрасно справляются с автоматическим управлением вентиляторов, главное — правильно выставить температурные лимиты в настройках материнской платы.
Большинство современных материнских плат имеют 4-пиновые разъемы, но варианты с 3 pin еще встречаются. В случае необходимости можно подключить 4-пиновый вентилятор к материнской плате с 3-контактными разъемами и наоборот. Вентиляторы при этом будут работать на стандартных оборотах.
Регулировать скорость вентиляторов можно и с помощью реобаса. Но эпоха подобных устройств уходит в прошлое: в современных корпусах для них не осталось места, а их функции взяли на себя материнские платы.
Если вентиляторов больше, чем разъемов на МП, используются специальные разветвители. Однако увлекаться ими не стоит: на один канал больше двух вентиляторов лучше не вешать. В противном случае придется обеспечить им дополнительное питание, что приведет к появлению лишних проводов в корпусе.
В любом случае уже на этапе покупки материнской платы нужно понимать, какое количество вертушек понадобится будущей системе. Несмотря на более высокую стоимость, предпочтение стоит отдать 4-пиновым вентиляторам с наиболее совершенным способом управления.
Сколько нужно вентиляторов и как их установить
Современная модель корпусостроения предполагает создание своеобразной аэродинамической трубы: холодный воздух поступает спереди, а горячий — выбрасывается через заднюю и верхнюю стенки. Корпуса с вентиляторами на боковой стенке и на дне из продажи почти исчезли. Чаще всего производители стараются создать в корпусе избыточное давление (ставят больше вентиляторов на вдув), и это не просто так. Во-первых, горячий воздух будет удалятся эффективнее, во-вторых, в корпусе будет оставаться меньше пыли.
Одного вентилятора вполне хватит, чтобы охладить системник офисного уровня без видеокарты с каким-нибудь селероном, пентиумом, семпроном или A10, где TDP процессора находится в районе 50 Вт. Автор предпочитает установку вентилятора на вдув, так как с выбросом горячего воздуха поможет кулер на процессоре, особенно если он башенного типа.
Расположение вентилятора показано схематично и зависит от типа корпуса и расположения в нём комплектующих.
Два корпусных вентилятора (один спереди, один сзади) вполне справятся с комбинацией типа Ryzen 3 (Core i3) + GTX 1650 (RX 550).
Три вентилятора (два спереди, один сзади) — заявка на средний уровень: Ryzen 5 (Core i5) + 2060 (RX 5500XT).
Четыре вертушки обеспечат нормальную работу для Ryzen 7 (Core i7) + 2070 (RX 5600XT).
Все меняется, когда в корпус приходит Ее Величество Игровая Видеокарта — главный отопитель любого игрового ПК. Чтобы удержать в узде тепловыделение HEDT-систем, кроме просторного корпуса нужно пять-шесть вентиляторов: два-три лицевых на вдув, один задний и два верхних на выдув. Или кастомная СВО.
Несколько советов
Открытая крышка системника — не панацея и решает вопрос только охлаждения процессора и видеокарты, а вот другие компоненты — чипсет, цепи питания, m.2 накопитель — обдува не получат и продолжат греться.
Современные производители часто делают сплошную лицевую панель с боковым забором воздуха. В таком случае хороший результат дает установка дополнительных вытяжных вентиляторов на верхнюю крышку.
Для процессорных кулеров и радиаторов СВО ищите вентиляторы с более высоким значением статического давления, которые смогут эффективнее прогонять через них воздух.
Подвод холодного воздуха через вентилятор на дне — неплохое решение, но автор бы от него отказался ввиду большого количества пыли, забрасываемой таким вентилятором в корпус.
Ставить вентиляторы на вдув на задней и верхней стенке нельзя, как и передние на выдув.
Автор не рекомендует переворачивать блок питания вентилятором вверх: он начнет засасывать горячий воздух от видеокарты и нагревать свои компоненты.
Читайте также: