Как сделать медь из свинца
1. Что такое свинец и для чего применяют свинцевание?
Свинец - металл серого цвета. Нормальный потенциал свинца равен -0,126 В. В паре с железом свинец, является катодом. Он мало склонен к пассивации в окислительных кислотах. Химическая стойкость свинцовых покрытий объясняется образованием сравнительно толстых защитных пленок, которые непосредственно защищают свинец. В серной кислоте, в частности, образуется защитная пленка сульфата свинца.
В азотной и уксусной кислотах свинец не устойчив, так как нитраты и ацетаты хорошо растворимы в воде. Неустойчив свинец и в растворах щелочей.
Свинцевание - нанесение тонкого слоя металлического свинца на изделие для придания ему необходимых характеристик.
Электролитические свинцовые покрытия применяют для защиты стали в химической промышленности, на коксохимических предприятиях, для предохранения аппаратуры от действия серной кислоты, сернистых газов, для защиты от действия на сталь отравляющих веществ, для защиты от действия бензина. Применяют свинцовые покрытия для защиты от воздействия паров серной кислоты.
Для электролитического свинцевания пригодны как кислые, так и щелочные электролиты. Известны составы на основе простых и комплексных солей: фторборатные, кремнефторидные, перхлоратные, сульфаматные, нитратные, ацетатные, плюмбитные, фенолсульфоновые, тартратные, пирофосфатные, полиэтиленполиаминовые, нитрилтриацетатные и др. Промышленное значение имеют борфторидные, кремнефторидные и фенолсульфоновые электролиты.
2. Электролиты для получения покрытий свинцом.
Состав электролитов для свинцевания и режимы электролиза представлены в таблице ниже.
Компоненты и режим работы
Состав электролитов, г/л
Клей мездровый (столярный)
Плотность тока, А/дм 2
Скорость осаждения, мкм/мин
В состав кислых электролитов свинец входит в виде следующих солей: борфторида Pb(BF4)2, кремнефторида Pb(SiF6)2, фенолсульфоната Pb(C6H4SO3OH)2, перхлората Pb(ClO4)2 и сульфамата Pb(H2NSO3). В таких электролитах необходимо присутствие свободной кислоты для предупреждения гидролиза соли свинца, увеличения электропроводимости, некоторого улучшения структуры осадков и снижения склонности к дендритообразованию. В составе электролита для первых двух ванн содержится, кроме того, борная кислота, необходимая для повышения устойчивости соответствующих свинцовых солей.
Режим электролиза, в частности, плотность тока, выбирают в зависимости от необходимой толщины покрытия. Для получения тонких слоев покрытий (~ 30 мкм) рекомендуется применять более разбавленный электролит.
Щелочные плюмбитные электролиты просты по составу, доступны, их легко приготовить. В этих электролитах свинец присутствует в виде анионов Pb(OH)4 2- , образующихся в результате диссоциации комплексных солей плюмбитов натрия или калия Na2[Pb(OH)4] или K2[Pb(OH)4]. Низкая растворимость плюмбитов в щелочном растворе (0,23 экв. Pb в 4 н. КОН)ограничивает верхний предел допустимых плотностей тока (10-40 А/м 2 ). Для расширения интервала плотностей тока рабочую температуру поддерживают в пределах 60-70 °С. Растворимость свинца увеличивается в присутствии 60-65 г/л глицерина или сегнетовой соли. Это объясняется образованием растворимых комплексных соединений свинца типа глицератов.
Свинцовые аноды пассивируются вследствие накопления карбоната натрия, образующегося при взаимодействии свободной щелочи с диоксидом углерода воздуха. Катодная поляризация в щелочном плюмбитном электролите невелика.
Поляризуемость катода в интервале рабочих плотностей тока более высокая, что наряду с хорошей электропроводимостью электролита обуславливает более высокую рассеивающую способность по сравнению с кислыми растворами.
Широкое применение щелочных электролитов ограничено невысокой стабильностью растворов, низкими плотностями тока, пассивированием анодов и отсутствием хорошего сцепления свинцовых покрытий со стальной основой.
Борфтористоводородные электролиты отличаются высокой стабильностью, в них получаются мелкокристаллические, хорошо сцепленные с основой осадки непосредственно на стали, поэтому выбран именно этот электролит.
Медь — один из первых металлов, освоенных человечеством.
Благодаря низкой температуре плавления и высокой пластичности она не теряет своей популярности уже пятое тысячелетие. Красный металл широко используется как в промышленности, так и в домашних условиях для изготовления украшений, поделок и деталей путем литья из меди.
Литье меди
В промышленных условиях используются такие технологии, как
- Литье меди в формы
- Порошковая металлургия
- Гальваническое нанесение покрытия
- Горячий и холодный прокат
- Штамповка из листов
- Волочение проволоки
- Механическая обработка
Они требуют сложного и дорогого профессионального оборудования, высокой квалификации персонала и сопровождаются высокими энергозатратами.
Проволочное волочение меди
В домашних условиях небольшой мастерской применяются простые технологии, во многом повторяющие приемы работы мастеров медного века. Это медное литье и волочение проволоки, а также ковка и чеканка. Несмотря на простоту и древность технологических приемов, домашние мастера достигают высокого качества изделий. Достаточная точность литья обеспечивается тщательным изготовлением формы.
Характеристики меди
Медь — это металл с относительно низкой температурой плавления (1083С), плотностью 8 г/см3 и высокой пластичностью. Она встречается в природе в виде самородков. Благодаря этим качествам она стала первым металлом, освоенным человечеством. Археологи находят инструменты и оружие, в захоронениях, датируемых III тысячелетием до н.э. Скорее всего, человечество освоило медное литье еще раньше, в конце каменного века.
Основные свойства металлов подгруппы меди
Латинское название металла- Cuprum связывают с названием острова Кипр, известного античного центра производства бронзовых изделий. Сплавы на основе меди — бронза и латунь обладают высокой прочностью и меньше подвержены окислению. Бронза широко применялась как основной металл человечества вплоть до освоения массовых технологий производства стали.
Медь обладает отличной электро- и теплопроводностью. Это обуславливает ее широкое использование в электротехнике и теплотехнике.
Кроме того, медь обладает выраженными бактерицидными свойствами.
Оборудование для плавки и литья меди
Для литья меди в домашних условиях не требуется особо сложного или дорого оборудования. Приобрести его или изготовить самостоятельно вполне по плечу домашнему мастеру.
Примеры графитовых тигелей
- Стальные щипцы для снятия и постановки тигля в печь.
- Муфельная печь или газовая горелка.
- Стальной крюк для снятия корки из окислов с поверхности расплава.
- Форма для литья.
Прежде всего, нужно расплавить медь. Чем лучше будет измельчено исходное сырье, тем быстрее произойдет расплав. Плавление будет происходить в тигле из керамики или огнеупорной глины. Муфельная печь должна быть оборудована термометром и застекленным оконцем для визуального контроля. Электронная система регулировки и поддержания температуры сделает медное литье проще и обеспечит лучшее качество отливки.
Формы для медного литья делается на основе модели. В зависимости от выбранной технологии формы бывают одноразовые (из специально отформованной в опалубке смеси) и многоразовые — стальные кокили. В последнее время получили распространение формы из высокотемпературного силикона.
В домашних условиях чаще применяют одноразовые формы. Модель изготовляют из воска или специальных сортов пластилина. Модель полностью повторяет пространственную конфигурацию будущего изделия. При заливке в форму горячего расплава воск плавится и вытесняется металлом, занимающим его место и повторяющим все детали рельефа формы. Такая форма называется выплавляемой.
Выжигаемая форма для литья меди
Существуют также выжигаемые формы. В них применяется модель, сделанная из горючего материала, например папье-маше. Модель в этом случае сгорает при заливке высокотемпературного расплава, продукты сгорания в виде газов выходят через заливное отверстие.
Применение медного литья
Медное литье применяется для изготовления широкого спектра изделий. В ювелирном деле легендарный металл чаще используют в составе сплавов. В небольших количествах ее добавляют в золотые изделия для повышения их прочности и стойкости к истиранию. Бронза, представляющая собой сплав меди с оловом, используется для создания авторских подвесок, цепочек, колец и сережек.
Ювелирные украшения из меди
Литье из меди применяется также для изготовления рыболовных блесен уникальной формы. Еще одна сфера применения — создание авторских масштабных моделей техники — кораблей, автомобилей, танков, самолетов и пр. Здесь кроме бронзы используется латунь — сплав с цинком.
Латунь и бронза применяются также для отливки элементов декора помещений, накладок и авторских дверных ручек. Здесь, кроме конструкционных достоинств — прочности, долговечности и внешнего вида, применяются и бактерицидные свойства меди и ее сплавов.
Процесс расплавки меди в домашних условиях
Процесс литья меди в домашних условиях несложен, но требует тщательной подготовки, планирования и четкого соблюдения временных и температурных параметров.
Начинается он с измельчения проволоки или лома и помещения ее в тигель. Одновременно следует включить муфельную печь на прогрев. Чем лучше будет измельчен металл, тем быстрее и эффективнее пройдут и расплав, и отливка. Важно следить за температурой расплава. При превышении температуры расплав начинает активно поглощать кислород воздуха и окисляться, сто ведет к снижению качества отливок. Чтобы снизить влияние кислорода воздуха, поверхность расплава присыпают толченым активированным углем.
Если муфельная печь недоступна, то тигель можно установить на сварную треногу и нагревать повернутой соплом вверх газовой горелкой.
Важно! Горелка обязательно должна быть надежно закреплена
Можно также сделать печь из шамотных кирпичей и стальной решетки, на которой будет рассыпан уголь. Такую печь необходимо обдувать мощным вентилятором или пылесосом.
После того как металл расплавился, нужно надежно захватить тигель щипцами и извлечь из печи, поставив на огнеупорное основание.
Используя стальной крюк, нужно сдвинуть к стенке образовавшуюся на поверхности расплава пленку из окислов, и, не допуская его остывания, тонкой струйкой вылить в отверстие формы. Если используется выплавляемая форма, следите за тем, чтобы струя наливаемого металла давала возможность для выхода материала модели.
Обязательно дайте отливке полностью остыть перед тем, как будете разбирать форму, очищать и дорабатывать изделие.
Важно! Обязательно использование защитных очков и перчаток с крагами. Не забудьте проверить наличие и работоспособность огнетушителя, пригодного для тушения электроустановок под напряжением.
Пусть ваше литье будет удачным, и медная отливка, изготовленная в домашних условиях, порадует вас и ваших заказчиков!
Предметы из меди широко используются как в промышленности, так и в хозяйстве. Вполне естественно, что у многих мастеров может появиться вопрос о том, как же наладить процесс выплавки и литья медных изделий в условиях дома или гаража. Технология выплавки меди известна очень давно и позволяет выплавлять изделия из сплавов — латуни и бронзы. О том, как выполняется плавка меди в домашних условиях, пошаговая инструкция расскажет подробно.
Медь — пластичный металл красноватого цвета. Такой цвет обусловлен наличием оксидной пленки на ее поверхности из-за взаимодействия с воздухом. Хорошо обрабатывается методом ковки и легко плавится.
- Также этот металл обладает такими свойствами, как электропроводность и теплопроводность, благодаря чему активно используется в электротехнике и некоторых других областях.
- Еще одно важное свойство меди — относительно невысокая температура плавления, что оказывает влияние на количество энергозатрат. Чистый металл плавится при температуре 1083 °С, если же добавить в сплав олово, то получится бронза, имеющая температуру плавления уже от 930 °C. При добавлении цинка получится латунь, которая переходит в жидкое состояние при температуре от 900 °C.
- При подборе лома для переработки следует учитывать, что самая чистая медь — электротехническая. При переработке сплавов из бронзы или латуни нужно знать, что старинные изделия из этих металлов могут содержать высокие концентрации мышьяка, это может не лучшим образом сказаться на вашем здоровье.
Пошаговая инструкция по выплавке меди
Если вы приняли решение организовать техпроцесс по плавлению металла в домашних условиях, в первую очередь, вам следует знать температуру кипения меди. Она составляет 2650°C. При этой температуре металл начинает кипеть и пузыриться. Изделие, отлитое при такой температуре, будет иметь высокое количество пор, что негативно скажется как на его механических, так и на декоративных свойствах.
Если правильно подготовить оборудование и организовать процесс плавки, то в домашних условиях можно получить качественные изделия как для технического, так и для бытового и декоративного применения.
Для организации техпроцесса понадобятся следующее оборудование и расходные материалы:
- форма, в которую будет заливаться металл;
- газовая горелка;
- горн;
- уголь древесный;
- крюк из железной проволоки;
- пылесос со шлангом;
- щипцы железные (для извлечения тигля из печи);
- тигель для выплавки металла (обычно для таких целей используются керамические или глиняные тигли);
- муфельная печь.
Последовательность действий
Выплавка может проводиться несколькими способами:
- Выплавка с помощью муфельной печи. Металл измельчают на кусочки. Чем мельче используются кусочки, тем быстрее будет происходить плавка. Кусочки засыпаются в тигель, который после заполнения помещается в печь. Печь предварительно разогревается до нужной температуры. В печах, изготовленных серийным способом, предусмотрено окно, через которое ведется наблюдение за процессом выплавки. После расплавления металла тигель извлекается из муфельной печи с помощью стальных щипцов. На поверхности жидкой меди находится пленка из окиси. Ее необходимо сместить стальным крюком к краю тигля. После этих действий медь аккуратно, но быстро заливается в заранее приготовленную форму.
- Выплавка с помощью газовой горелки. Если тигельной печи в вашем распоряжении не имеется, вместо нее вполне подойдет газовая горелка. Ее следует расположить под дном емкости с металлом, следя за тем, чтобы пламя охватывало всю поверхность днища тигля. При таком способе металл будет быстро окисляться из-за открытого доступа воздуха. Чтобы этого избежать, можно насыпать в емкость слой размельченного древесного угля.
- Выплавка с помощью паяльной лампы. Этот способ больше подходит для работы с более легкоплавкими сплавами на медной основе. Процесс проходит так же, как и с газовой горелкой.
- Выплавка с помощью горна или домашнего пылесоса. В этом случае емкость с металлом помещается на слой горящего древесного угля. Такую печь можно выложить из огнеупорного кирпича. Для создания подходящей температуры нужно организовать поддув воздуха. Это можно сделать двумя способами — используя горн или бытовой пылесос. При использовании пылесоса будет необходимо изготовить металлический переходник с соплом меньшего диаметра.
Чистая медь не обладает достаточно хорошей текучестью для изготовления сложных изделий. Для подобных целей лучше пользоваться латунью, причем следует иметь в виду — чем светлее сплав, тем ниже температура его плавления.
Микроволновые печи… Они достаточно давно вошли в нашу жизнь и занимают в ней прочное место, благодаря своим уникальным качествам, которые дают возможность любому пользователю быстро и беспроблемно согревать любые продукты, а также производить их готовку.
Как и у любой техники, у микроволновой печи существует свой срок эксплуатации, по истечении которого, она выходит из строя или подаёт симптомы к скорому наступлению данного события.
На написание такой статьи автора подтолкнуло то, что его микроволновая печь стала подавать явственные признаки, что конец её близок. В нашем случае, это заключается не в выходе из строя электронной части, а скорее в физическом износе самой камеры нагрева: износилось лакокрасочное покрытие, ввиду чего, есть риск получить пищу, с кусочками краски в её составе (Ммм вкуснотишша! Всё, как мы любим! Sarcasm mode: off).
Сразу оговоримся, что данная подборка не претендует на исключительную полноту и корректность ранжирования. Возможно даже, кто-то может посчитать мнение автора некорректным. Будем рады, если Вы выскажите своё мнение в комментариях к статье.
Автор также предупреждает, что для выполнения всего нижеописанного строго обязательно выполнение техники безопасности. Осуществляя какие-либо эксперименты, описанные в статье, вы делаете это на свой страх и риск,
автор не несёт ответственности за последствия.
▍ Итак, начнем!
В своё время он провел достаточно любопытный опыт, который поднял широкую волну на просторах интернета. Опыт заключался в том, что магнетрон микроволновки был использован в качестве излучающего устройства, которое позволяло (по утверждениям его автора) создать некую дальнобойную микроволновую пушку. Ввиду запрета на встраивание видео, вы можете его посмотреть по ссылке, на youtube.
Видео вызвало нешуточный вал споров. Вал дошел даже до зарубежного сегмента интернета и ряд блогеров, в частности, известный блогер Allen Pan взялся проверить утверждения, изложенные в ролике выше.
Но автор статьи решил пойти дальше, так как не планировал поджаривать соседей микроволновой пушкой.
Следующее видео, которое заставляет задуматься, это рассказ о том, как на основе трансформатора микроволновки сделать свой сварочный аппарат.
Кстати, если интересно, можно ознакомиться с устройством типичного трансформатора микроволновки:
Хммм уже интересней… Если кратко обобщить изложенную информацию, то переделка трансформатора под сварочный аппарат, как правило, заключается в том, что видоизменяется вторичная обмотка, в целях понижения напряжения и увеличения силы тока.
Однако, ввиду того, что у автора уже есть хороший сварочный аппарат инверторного типа, — такие самоделки его не заинтересовали. Это связано с тем, что современные инверторные сварочные аппараты дают своему пользователю достаточно широкие возможности по регулировке как силы тока, так и обеспечивают его интеллектуальными алгоритмами зажигания дуги. Не говоря уже о том, что физические размеры таких аппаратов весьма скромны и цена их более чем приемлема.
А вот следующая поделка , является достаточно полезной и заинтересует многих: создание аппарата точечной сварки. Для любого домашнего мастера, такой аппарат является весьма полезным, так как позволяет быстро соединять различные детали. Аппарат точечной сварки может быть весьма полезным в разработке собственных блоков питания (пауэрбанков), для чего потребуется быстрая приварка контактных пластин к различным аккумуляторным батареям, в частности, литий-ионным. Батареи такого типа весьма не рекомендуется перегревать, ввиду чего, в заводских сборках широко используется точечная сварка для прикрепления контактов:
Как можно было легко понять из предыдущих опытов, трансформатор микроволновки является достаточно мощным и легко переделывается в целях разнообразных самоделок. Благодаря этому, он является частой основой для создания разнообразных систем питания, таких широко известных и эффектных конструкций, работающих на основе токов высокого напряжения, — как катушка Тесла и лестница Иакова:
Этот опыт широко вышел за пределы разнообразных лабораторий и комнатушек самодельщиков, с применением данного эффекта проводятся даже разнообразные шоу (весьма эффектные, надо сказать):
Если кто заинтересовался этой темой, то по следующему адресу можно найти достаточно подробное описание по созданию катушек Тесла, с длиной получаемых разрядов до полутора метров!
И потихоньку, мы начинаем приближаться к самым интересным, на взгляд автора, самоделкам на базе микроволновки, — первой из которых является способ плавления стекла.
Способ выглядит так — предварительно измельченное стекло помещается в специальный теплоизолированный корпус печки для плавления, в котором и происходит его последующее спекание:
Работа печей для фьюзинга базируется на 2 различающихся способах:
1) на дно специальной камеры для плавления укладывается кружок из карбида кремния или несколько подобных кружков. Они и являются тепловыделяющим(и) элементом(элементами), которые преобразуют энергию микроволн — в тепло;
2) камера плавления представляет собой герметичную теплоизолированную камеру, которая изнутри выложена слоем карбида кремния. Данное покрытие также играет роль тепловыделяющего элемента, который и нагревает собственно камеру — изнутри.
Это занятие является достаточно увлекательным и занимаются им широкие слои, преимущественно женского, населения и их можно понять!
Если вы всерьез заинтересовались этим занятием, то на известном сайте имеются наборы начинающего.
При анализе информации, доступной в интернете по теме фьюзинга, была выявлена явная проблема , с которой сталкивается большинство энтузиастов этого дела: отсутствие четко контролируемого процесса нагрева и охлаждения. Такая проблема приводит к тому, что в получившемся изделии остаются остаточные напряжения, которые могут в любой момент привести к неожиданному его разрушению. Легко представить себе последствия, если предположить, что данное изделие является некой декоративной подвеской на шее, или серьгами в ушах!
И наконец, мы подошли к самому интересному моменту нашего хит-парада: плавление металла в обычной микроволновке! (на этом месте автор начинает ходить из угла в угол, с безумным взглядом, что то бормочет и машет руками. Успокоившись – продолжает дальше…)
В это сложно поверить, однако существует способ, который позволяет легко плавить металлы, имеющие температуру плавления до 1200 градусов в обычной микроволновке, мощностью не менее 700 Вт!
Способ заключается в том, что для плавления используется тигель из графита, с покрытием из карбида кремния, который и является радиопоглощающим материалом, эффективно переводящим энергию микроволнового излучения — в тепло. Это позволяет плавить металлы (если на примере бронзы), — то в районе 80 грамм, за одну закладку.
Рассмотренный в микроволновом способе плавки тигель у автора выдерживал 50 плавок без каких-либо признаков разрушения.
Если же брать индукционную плавильную печь, то она требует подключения воды — для охлаждения и так же не является слишком дешевой, а также требует времени на доставку.
Плавление же с использованием микроволновки является особенно интересным, если учесть возможность литья металла по выплавляемой модели, например, как в этой статье.
Или же в этих видео:
Единственной проблемой при таком подходе, на взгляд автора, является то, что при литье по выплавляемой модели, — требуется предварительно выплавить данную модель из подготовленных для литья форм. Даже если мы используем для предварительной 3D печати легкоплавкий пластик PLA, его удаление из готовой формы может стать определенной проблемой. А именно, потребуется достаточно высокая температура, чтобы выплавить его или даже выжечь из такой формы.
Проанализировав опыт других людей, автор пришел к выводу, что наиболее приемлемым подходом в данном случае является использование высокотемпературной горелки, в качестве которой можно воспользоваться, например, паяльной лампой.
Однако сама вероятность создания металлических изделий с использованием 3D принтера и имеющейся в наличии микроволновки, — является весьма примечательной и достойной внимательного рассмотрения!
Освоив данную связку двух технологий, вы сможете делать весьма любопытные вещи, как в видео ниже. Автор для прогрева использует горелку, но у вас есть способ лучше — микроволновка! Это видео вы можете использовать для ориентира, что вообще возможно делать:
Примечание. Температура плавления силикатного стекла составляет в районе 425 — 600°C. Выше температуры плавления стекло становится жидкостью. Температура плавления металла, например, бронзы — составляет в районе 950°C.
Таким образом, зная температуру плавления металла, который вы используете и снимая показания температуры с помощью термопары (например), возможно плавить только стекло и не доводить до плавления металл. И стекло заполнит все нужные места в металле, а сам металл — не повредится!
▍ Бонус
Завершая рассказ, нельзя не упомянуть еще одну достаточно забавную поделку, которая была в своё время изготовлена упомянутым ранее блогером Allen-ом Pan-ом. Для её создания он использовал трансформатор от микроволновки, который был переделан в электромагнит.
Работает устройство следующим образом: как только кто-либо берется за рукоятку, срабатывает емкостный датчик и включается электромагнит, благодаря чему молот намертво приклеивается к любой металлической поверхности, на которую он был предварительно установлен.
Любой, кто попытается оторвать молот от поверхности — потерпит неудачу, так как касание рукоятки включает электромагнит!
Оторвать же молот от поверхности и отключить его магнит, — может только хозяин, так как система откалибрована на распознавание отпечатка именно его пальца, которым он должен предварительно коснуться сканера. Получилось смешно:
Если кто-то задумает повторить такую самоделку, следующее видео может ему в этом помочь: здесь достаточно подробно показывается процесс изготовления электромагнита — из трансформатора микроволновки:
Как можно видеть из этого длинного рассказа, микроволновка, — это не только средство для приготовления и разогрева пищи, но и неисчерпаемый кладезь компонентов, которые позволят вам создать свои экспериментальные и даже вполне полезные вещи.
Для некоторых из этих неординарных применений, даже не требуется каких-либо её переделок!
К описанной технологии плавки хотелось бы добавить еще одно примечание, что в микроволновке плавится партия металла не более 80 грамм за один раз. Соответственно — для заливки такого объема металла не нужна слишком большая форма, и форма может быть легко обожжена на обычной бытовой газовой плите кухонного назначения (если у вас в наличии имеется таковая, а не электрическая плита).
При таком подходе, — процесс плавки металла становится поистине домашним и, можно даже сказать, уютным (в этом месте на заднем плане должен звучать зловещий хохот безумного учёного).
В любом случае, надеемся, что этот рассказ был для вас полезным и интересным, дав каждому читателю пищу для размышлений!
Для защиты стальных поверхностей от коррозии и придания им декоративного эффекта применяется омеднение. Существует несколько способов сделать его в домашних условиях, самым простым из которых является использование медного купороса и раствора серной кислоты.
Материалы:
- медный купорос;
- спирт;
- аккумуляторный электролит;
- дистиллированная вода;
- пищевая сода;
- щелочное моющее порошковое средство;
- скребок для мытья посуды.
Процесс омеднения стали
В стеклянной емкости необходимо растворить 100 гр. медного купороса в 150 мл. подогретой до +40°С дистиллированной воды.
Компоненты при смешивании не дают никакой видимой химической реакции, поэтому особые меры предосторожности не требуются. Главное избегать попадания электролита на кожу, поскольку содержащаяся в нем серная кислота в текущей концентрации вызывает острое жжение.
В двух отдельных емкостях готовятся растворы щелочи и соды. Для них используется обычная вода из-под крана. В емкости наливается по 1 л воды. В одну добавляется 1-2 ст. ложки пищевой соды, а во вторую такое же количество чистящего средства на основе щелочи.
Для омеднения используются подготовленные металлические изделия. Они должны быть зачищены до чистого металла и желательно отполированы, поскольку слой меди не перекроет рытвины и прочие дефекты. Подготовленное изделие необходимо обезжирить и очистить от окиси, промыв в щелочи с помощью скребка для посуды.
Затем изделие окунается в раствор купороса. Достаточно нескольких погружений, чтобы медь высвободилась из раствора и осела на стальной поверхности. Далее деталь вынимается и окунается в раствор соды, чтобы погасить кислоту.
После этого изделие снова погружается в купорос. Достаточно 2-3 повторения, чтобы вся поверхность покрылась медью без пропусков.
Также им возможно задекорировать кованые изделия, подсвечники и прочие предметы интерьера из черных металлов. Со временем они покроются патиной, что только повысит их декоративную ценность. Если позеленение нежелательно, то медь необходимо вскрыть бесцветным лаком. Метод очень простой и быстрый, а главное недорогой. Все реактивы для него можно купить в обычных магазинах, поэтому каждый сможет повторить его в домашних условиях.
Смотрите видео
Читайте также: