Как сделать магнитную индукцию
Совокупность магнитных силовых линий имеет определенный запас энергии. Так как данное явление в контуре обусловлено протеканием по нему электрического тока, то и количество такой энергии зависит от величины затрат источников (генераторов, гальванических элементов) на создание тока. Рассчитывается эта величина (Wмаг.п) по следующей математической формуле:
На заметку. С практической точки зрения, значение данной величины оказывает влияние на мощность электрических агрегатов: электродвигателей, генераторов. Чем больше мощность силовых линий, образуемых обмотками или постоянными магнитами статора и ротора, тем выше крутящий момент и мощность двигателя, больше его КПД.
Открытие электромагнитной индукции
Например, с помощью электрического поля можно намагнитить железный предмет. Наверное, должна существовать возможность с помощью магнита получить электрический ток.
Сначала Фарадей открыл явление электромагнитной индукции в неподвижных относительно друг друга проводниках. При возникновении в одной из них тока в другой катушке тоже индуцировался ток. Причем в дальнейшем он пропадал, и появлялся снова лишь при выключении питания одной катушки.
Через некоторое время Фарадей на опытах доказал, что при перемещении катушки без тока в цепи относительно другой, на концы которой подается напряжение, в первой катушке тоже будет возникать электрический ток.
Следующим опытом было введение в катушку магнита, и при этом тоже в ней появлялся ток.
Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.
Чем больше будет это изменение, тем сильнее получится индукционный ток
Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки
А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.
Явление электромагнитной индукции
При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции , вывод формул и закона электромагнитной индукции относится к курсу девятого класса.
Явление электромагнитной индукции
Классическое определение этого явления гласит, что оно представляет собой появление упорядоченного движения заряженных частиц в замкнутом проводящем ток контуре (проводнике) при изменении проходящей через него, создаваемой постоянным магнитом совокупности силовых магнитных линий.
На заметку. Впервые обнаружить описываемое в статье явление экспериментальным путем получилось в 1831 году у известного ученого-физика Майкла Фарадея. Для своих опытов он использовал железное кольцо с намотанными с двух противоположных сторон витками медного провода, которые были соединены с гальваническим элементом и магнитной стрелкой. При подключении к первой обмотке гальванического элемента стрелка некоторое время двигалась, после чего останавливалась, после его отключения – плавно возвращалась в первоначальное положение. Подобные движения стрелки позволили предположить, что упорядоченное движение носителей электрических зарядов может возникать под воздействием совокупности силовых магнитных линий, источником которых служит первая обмотка.
Майкл Фарадей
Нахождение ЭДС индукции через силу Лоренца
В обоих этих случаях будет выполняться закон электромагнитной индукции. При этом происхождение электродвижущей силы в этих случаях различное. Рассмотрим подробнее второй из этих случаев
В данном случае проводник движется в магнитном поле. Вместе с проводником совершают движение и все заряды, которые находятся внутри проводника. На каждый из таких зарядов со стороны магнитного поля будет действовать сила Лоренца. Она и будет способствовать перемещению зарядов внутри проводника.
ЭДС индукции в данном случае будет иметь магнитное происхождение.
Рассмотрим следующий опыт: магнитный контур, у которого одна сторона подвижная, помещают в однородное магнитное поле. Подвижная сторона длиной l начинает скользить вдоль сторон MD и NC с постоянной скоростью V. При этом она постоянно остаётся параллельной стороне СD. Вектор магнитной индукции поля будет перпендикулярен проводнику и составлять угол а с направлением его скорости. На следующем рисунке представлена лабораторная установка для этого опыта:
Сила Лоренца , действующая на движущуюся частицу, вычисляется по следующей формуле:
Сила Лоренца будет направлена вдоль отрезка MN. Рассчитаем работу силы Лоренца:
A = Fл*l = |q|*V*B*l*sin(a).
ЭДС индукции — это отношение работы, совершаемой силой при перемещении единичного положительного заряда, к величине этого заряда. Следовательно, имеем:
Ei = A/|q| = V*B*l*sin(a).
Эта формула будет справедлива для любого проводника, движущегося в с постоянной скоростью в магнитном поле. ЭДС индукции будет только в этом проводнике, так как остальные проводники контура остаются неподвижными. Очевидно, что ЭДС индукции во всем контуре будет равняться ЭДС индукции в подвижном проводнике.
Тема 10. Явление электромагнитной индукции
Модель для изучения устройства генератора переменного тока.
Озвученная анимация для изучения устройства и принципа работы генератора переменного тока.
Анимационная иллюстрация эксперимента по обнаружению явления электромагнитной индукции и установлению правила Ленца (взаимодействия магнита с алюминиевым кольцом).
Озвученная иллюстрация для изучения устройства и принципа работы громкоговорителя.
Анимированная модель для изучения работы электронно-лучевой трубки осциллографа.
Озвученная иллюстрация для изучения устройства и принципа работы микрофона.
Иллюстрированный и озвученный рассказ о линии электропередач и уменьшении потерь в ней.
Наблюдение работы генератора переменного тока, подключенного к лампочке.
Эксперимент по изучения зависимости индукционного тока от скорости изменения магнитного поля.
Для наблюдения работы трансформатора при нагревании и закипании воды в лотке вторичной обмотки.
Для изучения работы понижающего трансформатора.
Для изучения устройства и принципа работы трансформатора.
Эксперимент по обнаружению явления электромагнитной индукции в различных случаях.
Эксперимент по обнаружению явления электромагнитной индукции (опыт Фарадея).
Иллюстрированный и озвученный рассказ об использовании явления электромагнитной индукции в высоковольтном генераторе.
Иллюстрированный и озвученный рассказ о принципе получения переменного электрического тока при вращении проводящей рамки в магнитном поле.
Иллюстрированный и озвученный рассказ об устройстве и принципе работы генератора переменного тока.
Анимационная озвученная модель для объяснения явления электромагнитной индукции.
Для отработки умения решать задачи на вычисление параметров в линии электропередач.
Всего документов: 27
Тема 8. Электрическая цепь. Тема 9. Магнитное поле Тема 10. Явление электромагнитной индукции Тема 11. Полупроводники. Полупроводниковые приборы.
Что может быть лучше, чем вечером понедельника почитать про основы электродинамики. Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.
Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.
Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.
Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея.
Майкл Фарадей (1791-1867)
История и определение
Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!
При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!
Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.
Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.
Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:
ЭДС, возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.
А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.
Правило правой руки
Примеры решения задач
Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.
И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть - обратитесь к нашим авторам! Теперь вы знаете где заказать курсовую работу. Мы быстро предоставим подробное решение и разъясним все вопросы!
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.
Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.
Вихревые токи, или токи Фуко
Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.
Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.
Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.
Электромагнитное поле
Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.
Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.
Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.
Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.
Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.
Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.
Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.
Вихревые токи, или токи Фуко
Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.
Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.
Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.
Электромагнитное поле
Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.
Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.
Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.
Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.
Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.
Читайте также: