Как сделать кварки
В статье я примерно опишу как и почему из обладающих высокой энергией кварков, антикварков и глюонов появляются струи.
Это поведение кварков, отличное от поведения заряженных лептонов, нейтрино, фотонов и прочих, происходит из того факта, что кварки и глюоны подвержены действию сильного ядерного взаимодействия, в то время как другие частицы ему не подвержены. Большая часть взаимодействий между двумя частицами становится слабее с увеличением расстояния. К примеру, гравитационное взаимодействие между двумя планетами падает обратно пропорционально квадрату расстояния между ними. То же выполняется для электрического взаимодействия между двумя заряженными объектами, оно также падает как квадрат расстояния. Вы самостоятельно можете потереть надувной шарик, зарядив его статическим электричеством, а потом поднести к голове. Если поднести его ближе, ваши волосы встанут дыбом, но этот эффект быстро исчезает, если отодвинуть шарик дальше.
Сильное же ядерное взаимодействие, хотя и растёт на коротких дистанциях и уменьшается на больших (хотя не так быстро, как электричество — это свойство важно для понимания истории сильных взаимодействия), однако перестаёт уменьшаться на расстояниях порядка одной миллионной от миллиардной доли метра — порядка радиуса протона, что в 100 000 раз меньше радиуса атома. И это не случайность — этот эффект на самом деле обуславливает размер протона. Это взаимодействие, порождаемое глюонным полем, становится постоянным. А это значит, что если вы попробуете вытащить кварк из протона, как на рис. 1, вы обнаружите, что тащить его не становится легче, в то время, как вы отодвигаете его всё дальше и дальше. Ощущение примерно сравнимо с растягиванием резиновой ленты. За исключением того, что эта резиновая лента в какой-то момент порвётся. Как только в ленте накопится достаточно много энергии, природа предпочтёт порвать её надвое, вместо того, чтобы позволить вам тянуть дальше. И когда она порвётся, вместо одного адрона (протон) у вас получится два: протон или нейтрон плюс (обычно) пион. В момент разрыва пара кварк/антикварк формируется определённым образом — энергия в виде натяжения ленты преобразуется в энергию массы кварка и антикварка, плюс в определённую энергию движения некоторых дополнительных глюонов. Энергия сохраняется: начали вы с энергии массы протона, добавили энергию на растяжение протона, и получили энергию массы двух адронов (без всякого растяжения). Электрический заряд также сохраняется, так что у вас получится либо нейтральный пион и протон, либо положительно заряженный пион и нейтрон.
Рис. 1: если попытаться вытащить кварк из протона при помощи волшебного пинцета, то протон сначала исказится, а потом разобьётся на два адрона. Ваша попытка освободить кварк провалится, а затраченная энергия превратится в энергию массы второго адрона.
Что происходит, когда кварк высокой энергии выбивают из протона? К примеру, быстро движущийся электрон врезается в протон, сильно ударяет по кварку, придавая ему энергию движения гораздо большую, чем энергия массы всего протона?
Грубо говоря — экспертам скажу, что частично это заявление будет наивным и немного уводящим от сути, но позже я его скорректирую — происходит примерно то же, что показано на рис. 1, но в большем масштабе. Кварк двигается так быстро, что появляющаяся резиновая лента не успевает разорваться и растягивается слишком сильно — см. середину рис. 2. В результате она, вместо того, чтобы разорваться в одном месте и сформировать два адрона, разрывается во многих местах и формирует много адронов (в основном пионы и каоны (похожи на пионы, но содержат странный кварк или антикварк) и эта-мезоны, или, что реже, протоны, нейтроны, антипротоны или антинейтроны). Все они направятся более-менее в одном направлении. В результате у нас появятся брызги адронов, большая часть которых будет лететь в направлении изначального кварка. Вот вам и струя.
Рис. 2
Первоначальная энергия высокоэнергетического кварка теперь разделилась между адронами в струе. Но для кварков достаточно больших энергий (10 ГэВ и более) в формировании энергии массы новых адронов участвует малая доля энергии; большая её часть переходит в энергию их движения. В результате общая энергия и направление струи похожи на начальную энергию и направление кварка. Измеряя энергию и направление движения всех адронов струи, и определяя энергию и направление движения струи как целого, специалисты по физике частиц получают неплохую оценку энергии и направления движения изначального кварка.
То же верно для антикварков, и, с небольшой модификацией, для высокоэнергетических глюонов.
Хочу заметить, что никто не может подсчитать, как этот процесс происходит детально. Нам известно то, что я вам рассказал, в результате комбинации десятилетий теоретических подсчётов, теоретических догадок и данных — подробных данных из разных источников — которые в целом показывают, что эта история примерно такая и есть. И у нас есть причины быть в ней уверенными. Множество наших высокоточных проверок теории сильного ядерного взаимодействия в ином случае провалились бы.
Примечание: этот похожий на резинку объект специалисты по физике высоких энергий называют КХД-струной (КХД, или квантовая хромодинамика — это уравнения, описывающие сильное ядерное взаимодействие). Исторически, пытаясь понять наблюдаемое нами поведение адронов в природе (до того, как физики придумали КХД и открыли глюоны, и когда в кварках разбирались не так хорошо), теоретики в конце 1960-х придумали теорию струн. Только позже стало понятно, что струна в этой ранней теории струн была реальной вещью, частью физики. И ещё позже стало понять, что КХД-струны не получается сносно описать при помощи стандартной теории струн. Какое-то время это считали провалом, пока Шерк и Швартц не указали на то, что струнная теория может лучше подойти для описания квантовой гравитации (и, вероятно, всех фундаментальных частиц). И специалисты по теории струн отправились в другом направлении. А недавно стало понятно, как можно сделать нечто неожиданное при помощи стандартной теории струн, чтобы она лучше (не идеально, но гораздо лучше) описывала КХД-струны. К сожалению, она до сих пор отвратительно описывает струи.
Очевидно, есть ещё много всего, что можно сказать по поводу сильного ядерного взаимодействия.
Рис. 3
Теперь давайте я исправлю ту неточность, которая допущена на рис. 2. Я опустил ключевой этап. Ударенный кварк, как любая ускоренная частица, будет излучать. Внезапно ускоренный электрон будет излучать фотоны; внезапно ускоренный кварк будет излучать глюоны (и фотоны тоже, но их гораздо меньше). Это показано справа вверху на рис. 3. По этому на самом деле на краю протона появляется не быстрый кварк (рис. 3, слева в середине), а набор быстрых глюонов плюс быстрый кварк. В результате процесс формирования струи адронов (рис. 3, внизу) получается более сложным, чем на рис. 2, хотя итог у них более-менее одинаковый. Но форма струи на самом деле определяется тем, как излучаются глюоны ещё до того, как кварк выйдет из протона. Процесс излучения глюонов кварком можно подсчитать! Поэтому, при помощи уравнений для сильного ядерного взаимодействия можно подсчитать гораздо больше свойств струи, чем это может показаться на основе наивного рис. 2. Эти вычисления проверены данными, в результате чего были проверены уравнения для описания сильного ядерного взаимодействия.
Творог кварк лишь отдаленно напоминает привычный кисломолочный продукт, так как он выглядит совсем по-другому, имеет другой вкус и состав (см. фото). Благодаря тому, что во время изготовления этого продукта не используются повышенные температуры, в нем сохраняются огромное количество полезных веществ.
Для изготовления этого продукта применяют только высококачественное сырье. Кроме этого, в состав кварка не должно входить никаких пищевых добавок, красителей и других вредных веществ. Еще стоит сказать о том, что процесс приготовления этого продукта осуществляется в стерильных условиях.
Благодаря тому, что в приготовлении творога кварка не принимает участие человек, а только специальное оборудование, получается достичь высокого качества итогового продукта. К тому же повышается и срок хранения - он доходит до 2-х недель при соблюдении невысоких температур.
Полезные свойства
Польза творога кварка обусловлена сбалансированным составом витаминов и минералов. Диетологи говорят о том, что этот продукт полезен для организма, так как в его состав входят незаменимые кислоты и витамины. В этом продукте содержатся молочные бактерии природного происхождения. Этот кисломолочный продукт рекомендуется употреблять в период диетического и лечебного питания.
Во время приготовления творога кварка, сыворотка, которая образовывается во время сквашивания молока коровы при помощи определенных бактерий, убирается специальным сепаратором. Благодаря тому, что в состав этого продукта не входит сахар, его калорийность достаточно низкая. Поэтому употреблять этот творог можно людям, которые следят за своей фигурой или хотят избавиться от нескольких килограммов, а также тем, кто страдает от ожирения. Кроме этого, кварк легче усваивается организмом по сравнению с другими вариантами творога.
Врачи рекомендуют включать творог кварк в рацион ребенка, так как вещества, содержащиеся в нем, способствуют нормальному развитию скелета и мышц малыша.
Использование в кулинарии
Творог кварк используют в качестве самостоятельно продукта, а также он входит в состав многочисленных десертов. Можно его класть в выпечку взамен любого крема. Если вы приобрели творог с нейтральным вкусом, то вы можете разнообразить его любым наполнителем: чесноком, фруктами, зеленью, ягодами и т.п.
Вред творога кварк и противопоказания
Вред творог кварк может принести людям с индивидуальной непереносимостью продукта.
Последние исследования предполагают существование новой фундаментальной силы природы, которая, если будет доказана, приведет к революции в современной физике
Стандартная модель физики элементарных частиц
Разговоры о появлении новой физики ведутся не первый год. На самом деле, исследователи предсказывали существование Бозона Хиггса еще в 1960-х годах ХХ века, однако обнаружить частицу удалось лишь в 2012 году. Теперь же внимание физиков приковано к неуловимым и нестабильным частицам под названием B-мезон.
В-мезоны представляют собой парные нестабильные кварки, которые движутся вместе и быстро распадаются. Как предполагает Стандартная модель физики частиц, элементарные кирпичики материи – шесть видов лептонов и шесть сортов (иногда говорят ароматов) кварков. Все вместе эти частицы называются фермионами. Все больше исследований физики элементарных частиц проводятся в ЦЕРН на БАК.
В-мезоны – неуловимые и нестабильные парные кварки, которые движутся вместе и быстро распадаются.
Большой адронный коллайдер в ЦЕРН позволяет физикам изучать взаимодействия элементарных частиц
По мнению некоторых исследований, в ближайшие пару лет физики окончательно смогут подтвердить наличие новой силы природы. Напомню также, что Большой адронный коллайдер достигает в длину 27 километров и расположен в Европейской организации по ядерной энергии (ЦЕРН).
Подробнее о том, какие именно эксперименты позволили ученым сделать вывод о присутствии неизвестного фактора при взаимодействии элементарных частиц мы рассказывали здесь, рекомендую к прочтению.
Итак, существующие на сегодняшний день данные сподвигли исследователей оценить существование до сих пор неизвестной силы, которая влияет на то, как кварки превращаются в другие частицы. Работа ученых из Кембриджа, по сути, является продолжением предыдущего исследования физиков из ЦЕРН, опубликованного в марте прошлого года – физикам удалось обнаружить неожиданное поведение некоторых прелестных b-кварков.
Стандартная модель гласит, что этот аромат кварков должен распадаться на равные количества электронов и мюонов, когда те подвергаются процессу распада. Однако эксперимент LHCb обнаружил, что этот процесс производит больше электронов, чем мюонов.
Новая физика маячит на горизонте
Оказалось, что распад мюона происходит только при 85% частоты распада электрона. Исследователи отмечают, что полученный результат вряд ли может быть случайностью.
Для ученых эти результаты означают, что еще не обнаруженная частица, которую они назвали лептокварком – считается, что она влияет на процесс распада и способствует образованию этих дополнительных электронов, что – если подтвердится – приведет к краху Стандартной модели.
Эти прелестные кварки
Но вернемся к нашим баранам, то есть кваркам. Измерения, проведенные физиками из Лаборатории Кавендиша Кембриджского университета, показали аналогичные результаты. В ходе работы физики изучили два новых распада кварков – тех, что использовались в работе исследователей из ЦЕРН. Команда получила тот же результат, но с некоторыми различиями в распаде мюонов.
Как объясняют авторы научной работы, одним из лучших способов поиска новых частиц и сил является изучение b-кварков – экзотических кузенов верхних и нижних кварков, которые составляют ядро каждого атома.
Ранее физики из ЦЕРН сообщили об обнаружении нового типа частиц – тетракварков
Хотя b-кварки не существуют в больших количествах естественным образом, Большой адронный коллайдер способен производить миллиарды из них каждый год и все они регистрируются специально разработанным детектором под названием LHCb. Именно на распад b-кварков может влиять неизвестная сила природы или частица. И оба проведенных эксперимента бросают вызов Стандартной модели.
Хотите всегда быть в курсе последних открытий в области физики элементарных частиц и квантовых технологий? Подписывайтесь на наш канал в Telegram! Так вы точно не пропустите ничего интересного!
В ближайшие год-два мы должны многое узнать о фундаментальных законах Вселенной
Хотя результаты, о которых мы говорили в этой статье не являются окончательными, обе научные работы представляют больше доказательств того, что во Вселенной существует неизвестная нам фундаментальная сила природы. Или частица. И она ждет, пока мы ее откроем.
Внутри атома находится в основном пустое пространство, плотное ядро с величайшей силой, когда-либо известной, и частицы, называемые кварками, которые еще не были замечены. На самом деле, у кварков может быть нулевой размер, в то время как они перемещаются вокруг нейтронов и протонов почти со скоростью света. Электроны также находятся везде, где они могут быть, одновременно. Ну, квантовое царство - странное место.
Кварки внутри протонов и нейтронов настолько малы, что еще не были обнаружены никаким оборудованием. Самым мощным устройством в этом отношении является европейский ускоритель частиц, называемый Большим адронным коллайдером, который позволяет нам определять размеры объектов размером до 5 * 10 -20 м, то есть размером 1/2000 протона. Все, что меньше этого, может остаться незамеченным, а кварки могут быть меньше.
Насколько велики кварки?
Кварк необязательно должен иметь размер 5 * 10 -20 м. Он может даже иметь нулевой размер, но это тоже теория. Если рассматривать эту теорию как реальность, протон может быть размером с баскетбольный мяч, а три кварка - размером с три маленькие песчинки или даже меньше. Кварки движутся вокруг протона или нейтрона почти со скоростью света. Как и атом, протон и нейтрон также состоят из пустого пространства.
Однако силы, удерживающие кварки вместе, огромны. В отличие от Земли, внутри протона нет ни поля, ни гравитации.
Силы в квантовом мире
Вещи в мире субатомных частиц не так легко представить и понять, как вещи, происходящие на Земле. В 1940-х годах американский физик Ричард Фейнман начал исследовать субатомные силы. Он обнаружил, что, скажем, в протоне нет гравитационного поля. Вместо этого частицы толкались, испуская и поглощая частицы.
Движения и силы внутри атомного ядра нелегко описать с помощью гравитационных полей и законов.
В протоне или нейтроне есть частица, несущая силу и удерживающую протон вместе. Он действует как клей и поэтому называется глюоном. Глюон - это то, что кварки излучают и поглощают. Следовательно, внутри протона не только движущиеся кварки. Есть также глюоны, прыгающие вперед и назад между кварками, а некоторые глюоны даже взаимодействуют с другими глюонами. Пустое место в протонах, нейтронах и атоме все еще остается. Итак, откуда берется масса?
Масса и энергия
Все состоит из атомов, и все имеет массу. Однако атом по сути является пустым пространством. Протоны и нейтроны имеют почти одинаковую массу и в общем называются нуклонами. Масса нуклона примерно в 1836 раз больше массы электрона. Если округлить массу до 2000, электроны можно не учитывать. Масса объекта почти равна к сумме масс нуклонов, создающих этот объект. Но и нуклоны тоже имейте значительное пустое пространство внутри.
Глюоны безмассовые, поэтому каждый кварк должен иметь массу, равную одной трети нуклона, но это не так. Сумма массы всех кварков в объекте составляет около 2% от общей суммы. Скорость кварков близка к скорости света, то есть они содержат значительную кинетическую энергию. Кварки масштабируются в пространстве 10-15 м в поперечном направлении, и содержание такого быстрого объекта в таком маленьком месте требует огромных усилий, а значит, создает массу потенциальной энергии.
Относительность в субатомных частицах
Около 98% массы всего сущего состоит из экстремальной энергии протонов и нейтронов, а не из массы кварков внутри них.
В атоме есть нечто большее: виртуальные частицы вещества и антивещества, которые существуют всего лишь мгновение. Они усложняют представление, поскольку появляются повсюду во Вселенной, от глубокого космоса до ядра атомов.
Окончательным изображением объекта будет, главным образом, энергия, удерживаемая вместе силовыми полями в протонах и нейтронах, ядрах, атомах и молекулах, создающих объект. Это объяснимо в квантовом царстве. Науке предстоит многое сделать, чтобы завершить этот образ и узнать, что на самом деле происходит в любом масштабе окружающего мира или в нас.
Общие вопросы о субатомных частицах
Сколько существует субатомных частиц?
На данный момент открыто 36 подтвержденных элементарных частиц. Они также включают в себя античастицы. Субатомные частицы бывают двух типов: элементарные и составные. Они могут длиться всего несколько секунд и обнаруживаться повсюду во Вселенной, а не только внутри ядра атома.
Какие силы удерживают вместе субатомные частицы?
Субатомные частицы удерживаются вместе двумя типами сил: ядерной силой и электромагнитной силой. Это самая мощная сила, известная человечеству. Он должен удерживать частицы, движущиеся со скоростью, близкой к скорости света, в чрезвычайно маленьком пространстве, так что это самая сильная сила, обнаруженная до сих пор.
Что такое 12 элементарных частиц?
Существует более 12 субатомных частиц, но 12 основных включают шесть кварков (верхний, нижний, странный, очарованный, красивый и истинный), три электрона (электрон, мюон, тау) и три нейтрино (электрон, мюон, тау).
Что такое кварк?
Кварк - это субатомная частица, находящаяся внутри протонов и нейтронов. Они значительно меньше протонов, поэтому внутри протонов и нейтронов остается много пустого места. Кварки имеют 2% массы и 98% энергии, но они создают тяжелую массу нуклонов, согласно теории относительности Эйнштейна.
Читайте также: