Как сделать из усилителя генератор
Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать. В интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем все это.
Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон) .
Классика жанра — генератор ВЧ
Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.
R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.
Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.
Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.
Механизм генерации
Упрощенно схему можно представить так:
Все оказалось проще пареной репы (как всегда).
Разновидности
В безбрежном инете можно еще встретить такую реализацию этого же генератора:
Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.
Индуктивная трехточка
Эту схему выбираю я, и советую вам.
R1 – ограничивает ток генератора
R2 – задает смещение базы
C1, L1 – колебательный контур
C2 – конденсатор ПОС
Эти схемы идентичны.
Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.
Разновидности
Мое небольшое ноу-хау: можно поставить между общим и базой диод:
Этот диод ускоряет перезаряд C2, что приводит к увеличению мощности генерируемого сигнала. Однако, вместе с тем, это вносит в сигнал нелинейные искажения, так что на выходе придется ставить фильтры НЧ для подавления паразитных гармоник.
Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.
Двухтактный генератор для ленивых
Самая простая схема генератора, какую только мне приходилось когда-либо видеть:
В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.
Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…
Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.
Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.
Двухтактный генератор для трудолюбивых
Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.
Что мы здесь видим?
Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2
Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!
Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков 🙂
Особо изощренных вариантов исполнения этой схемы я не встречал…
Теперь немного креатива.
Генератор на логических элементах
Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.
Видим страшную схему.
Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):
Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.
Итак, смотрим схему генератора. Имеем:
Два инвертера ( DD1.1, DD1.2)
Колебательный контур L1 C1
Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.
Начнем сначала. Зачем нам нужен резистор?
А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…
Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.
Ну что, сложно?
Если (сложно)
чешем (репу) ;
читаем еще раз;
>
Теперь поговорим о разновидностях подобных генераторов.
Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:
Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:
Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.
Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.
Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.
Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя 🙂
Самодельные генераторы или генераторы нестандартные (неполно-функциональные)
с их разработками, схемами и прочими атрибутами.
Ветка только для практических наработок, конкретных предложений вариантов схем и для всего, что необходимо для изготовления и настройки самодельных генераторов.
ГЕНЕРАТОРЫ:
Генератор Дена он же den737 ссылка на тему Как сделать и настроить этот генератор обсуждать только там
Генератор синус на К525ПС2Б генератор AD530 от wassaw
Генератор синус с АПЧ на транзисторах CiganVM
Генератор синус с АПЧ TDA2030 - CiganVM - мало вых. напряжение и сильно греется
Генератор синус с АПЧ - vasiljew
Усилитель vasiljew усь.GIF 4Б
Генератор XR2206 (174ГФ2)
УСИЛИТЕЛЬ Борис 737
ne5532p 2 ОУ 290216_070316-4.jpg -ген синуса
Генератор меандра в синус на 561ЛА7 мостовая
Генератор с АПЧ псевдо синус (трапеция)- sean
TDA 7265
генератор меандра SG3525A
ПЫХТЕЛКИ - СГ
ПРОЧЕЕ:
Обязательно к прочтению и изучению
Основа для построения генератора
DEDовская пЫхтЕлка
видео Лечебный диск (плоский диск и тор Мишина А изготовление и технология - Седой А.)
Изготовление и проверка резонансов ТМА и ДМА
Вариант оправки для ТМА
Настройка пыхтелки КЫТ Пыхтелка-2П
Услители на полевиках
ICL8038 ген синуса не тянет
Обновлен список скайп-чатов:
СГ - самодельные генераторы и усилители для
1 Тор Мишина А ТМА
2 Диск Мишина А ДМА
3 Средний Диск Мишина А СДМА (лак 0,5)
4 Малый Диск Мишина А МДМА (лак 0,2)
5 Мини Диск Мишина А МиДМА (лак 0,1)
В данной статье описывается простой генератор звуковых частот, проще говоря - пищалка. Схема простая и состоит всего из 5 элементов, если не считать батарейку и кнопку.
Описание схемы:
R1 задает смещение на базу VT1. А с помощью C1 осуществляется обратная связь. Динамик является нагрузкой VT2.
Сборка:
Итак, нам понадобится:
1) Комплементарная пара из 2х транзисторов, то есть один NPN и один PNP. Подойдут практически любые маломощные, например КТ315 и КТ361 . Я использовал то, что было под рукой - BC33740 и BC32740.
2) Конденсатор 10-100нФ, я использовал 47нФ (маркировка 473).
3) Подстроечный резистор около 100-200 кОм
4) Любой маломощный динамик. Можно использовать наушники.
5) Батарейка. Можно практически любую. Пальчиковую, или крону, разница будет только в частоте генерации и мощности.
6) Небольшой кусок фольгированного стеклотекстолита, если планируется делать все на плате.
7) Кнопка или тумблер. Мной была использована кнопка из китайской лазерной указки.
Итак. Все детали собраны. Приступаем к изготовлению платы. Я сделал простенькую плату поверхностного монтажа механическим путем (то есть при помощи резака).
Итак, все готово к сборке.
Сначала монтируем основные компоненты.
Потом впаиваем провода питания, батарейку с кнопкой и динамик.
На видео показана работа схемы от 1.5В батарейки. Подстроечный резистор меняет частоту генерации
Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.
Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.
Автоколебательные транзисторные приборы
Генератор на транзисторе разделяют на несколько видов:
- по частотному диапазону выдаваемого сигнала;
- по типу выдаваемого сигнала;
- по алгоритму действия.
Частотный диапазон принято подразделять на следующие группы:
- 30 Гц-300 кГц – низкий диапазон, обозначается нч;
- 300 кГц-3 МГц – средний диапазон, обозначается сч;
- 3-300 МГц – высокий диапазон, обозначается вч;
- более 300 МГц – сверхвысокий диапазон, обозначается свч.
Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.
Следующее разделение – по виду выдаваемого сигнала:
- синусоидальный – происходит выдача сигнала по синусоиде;
- функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
- генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.
Транзисторные усилители различаются по алгоритму действия:
- RC – основная область применения – низкий диапазон и звуковые частоты;
- LC – основная область применения – высокие частоты;
- Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.
Изображение на электрических схемах
Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.
Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.
Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.
Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.
Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.
В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.
Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.
Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.
Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.
Функциональный транзисторный генератор
Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).
Различают три основных вида импульсов:
- прямоугольные;
- треугольные;
- пилообразные.
Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.
Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.
Блокинг-генератор
По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).
Генераторы импульсов на полевых транзисторах
Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.
Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.
Регенераторы
LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.
Генератор шума
Простой звуковой генератор своими руками
Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.
При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.
Видео
Устройство без генератора либо вообще ни на что не способно, либо предназначено для подключения к другому (которое скорее всего содержит генератор). Не будет преувеличением сказать, что генераторы являются таким же необходимым устройством в электронике, как регулируемый источник питания постоянного тока.
Релаксационный генератор
Раньше для создания релаксационных генераторов применялись устройства с отрицательным сопротивлением, такие, как однопереходные транзисторы или неоновые лампы. Теперь предпочитают ОУ или специальные интегральные схемы таймеров. На рисунке показан классический релаксационный RС-генератор.
Релаксационный генератор на базе операционного усилителя
Работает он просто. Допустим, что при начальном включении питания выходной сигнал ОУ выходит на положительное насыщение (каким образом это произойдет — неважно). Конденсатор начинает заряжаться до напряжения U + с постоянной времени, равной RC. Когда напряжение на конденсаторе достигнет половины напряжения источника питания, ОУ переключается в состояние отрицательного насыщения (он включен как триггер Шмитта). Конденсатор начинает разряжаться до U- с той же самой постоянной времени. Этот цикл повторяется бесконечно, с периодом 2,2 RС. Цикл не зависит от напряжения источника питания.
Применяя для заряда конденсатора источники тока, можно получить колебания хорошей треугольной формы. Пример удачной схемы (datasheet СА3160):
Пример схемы генератора, управляемого напряжением
Генератор с низким уровнем шума
В схеме используется пара КМОП-инверторов (в виде цифровых логических схем). Соединение инверторов между собой образует некоторую разновидность RC релаксационного генератора с выходным сигналом в виде прямоугольного колебания. Измерения, проведенные для этой схемы, работающей на частоте 100 кГц, показали, что плотность мощности шума в ближайшей боковой полосе ниже, по крайней мере, на 85 дБ уровня основного колебания. Иногда встречается аналогичная схема, в которой заменяют местами элементы R2 и С. Хотя это и превосходный генератор, но он уже имеет крайне зашумленный выходной сигнал.
Представленная на рисунке ниже схема имеет даже более низкий уровень шума.
Малошумящий генератор
Кроме того, имеется возможность модулировать выходную частоту с помощью внешнего тока, прикладываемого к базе транзистора Т1. В этой схеме транзистор Т1 функционирует как интегратор. На коллекторе Т1 вырабатывается сигнал асимметричной треугольной формы. Сами же инверторы работают в качестве неинвертирующего компаратора. Изменяют полярность возбуждения на базе каждые полпериода. Эта схема имеет плотность шума — 90 дБД/Гц, измеренную на частоте 100Гц смещения от несущего колебания 150 кГц, и —100 дБД/Гц, измеренную при смещении 300 Гц. Эти схемы превосходны в отношении уровня бокового шума. Но генерируемая частота имеет большую чувствительность к колебаниям напряжения источника питания.
Читайте также: