Как сделать из переменного тока постоянный на мотоцикле
Как сделать выпрямитель и простейший блок питания
Выпрямитель - это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.
Определение
Различают два типа выпрямителей:
Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.
Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.
Что значит стабилизированное и нестабилизированное напряжение?
Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.
Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.
Выходное напряжение
Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.
Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:
Амплитудное напряжение в сети 220В равняется:
Схемы
Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.
Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.
Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.
Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.
О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.
1. Выпрямитель по схеме Гретца или диодный мост;
2. Выпрямитель со средней точкой.
Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.
Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.
По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.
Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.
Сглаживание пульсаций
Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.
Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…
Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.
Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.
Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.
Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:
где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.
Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.
Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.
Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.
Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).
Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:
Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.
Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.
Как сделать блок питания своими руками?
Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью - Как устроен компьютерный блок питания.
У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.
Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.
Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.
Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:
Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.
Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:
Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:
Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.
Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.
Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.
Регулируемые блоки питания
Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.
Вот более наглядная схема для сборки регулируемого блока питания.
Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.
В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.
Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.
Кстати похожей схемой регулируют и сварочный ток:
Заключение
Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.
Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.
По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.
Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.
Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.
Все сводиться к тому, чтобы подключить реле и трансформатор следующим образом. Первым делом на сетевую обмотку трансформатора накидываем нагрузку в виде светодиодной лампочки - это будет выход инвертора.
Затем низковольтную обмотку подключаем параллельно реле. Теперь один контакт идет на питание к аккумулятору, а второй подключаем к другому контакту аккумулятора, но только через замкнутый контакт реле. Плюс или минус значения не имеет.
Все! Ваш инвертер готов! Супер просто!
Подключаем к аккумулятору - он у нас в роли источника на 12 В и лампа на 220 В начинает светиться. При этом вы слышите писк реле.
Как же работает этот инвертер?
Все очень просто: когда вы подключаете питание все напряжение идет через замкнутые контакты на реле. Реле срабатывает и контакты размыкаются. В результате питание реле отключается и оно приводит контакты обратно на замкнутые. В результате чего цикл повторяется. А так как параллельно реле подключен повышающий трансформатор, мощные импульсы постоянного включения-выключения подаются ему и преобразуются в переменный высоковольтный ток. Частота такого преобразователя колеблется в пределах 60-70 Гц.
Конечно, такой инвертор не долговечен - рано или поздно реле выйдет из строя, но не жалко - оно стоит копейки или вообще бесплатно, если взять старое. А выходное напряжение по роду тока и разбросу просто ужасно. Но этот простейший преобразователь может вас выручить в какой-нибудь серьезной ситуации.
Смотрите видео изготовления инвертора
Потребители работающие на постоянном токе не могут быть подключены из розетки без выпрямляющего устройства , без него вы просто спалите электрический аппарат постоянного тока , в лучше случаи предохранитель в нём при наличии.
Выпрямить переменный ток можно с помощью одного диода, но это не желательно. Давайте посмотрим на график где будет видно какой ток получится после прохождение тока через диод.
прохождение тока через диод
напряжение прохождения тока через диод
После выпрямления если так можно сказать видя на графике что на выходе не совсем переменный ток , на графике видно что диод просто срезал отрицательную половину. По этому лучше всего выпрямлять переменный ток с помощью диодного моста.
Схема соединения диодного моста
схема диодного моста
При соединении диодов смотрите на схему , да бы не попутать выводы ниже на картинке фотография диода и его обозначения.
обозначение диодного моста
График на выходе после диодного моста
График на выходе после диодного моста
После диодного моста на выходе получилось постоянное пульсирующее напряжение с частотой 100 Гц , что превышает частоту нашей сети в два раза.
Что бы сгладить постоянное пульсирующее напряжение на выходе с диодного моста добавляют конденсатор либо сглаживающий фильтр , подключается он параллельно нагрузке.
Схема подключения и график с подключение конденсатора
Схема подключения и график с подключение конденсатора
На графике синем цветом показан как изменяется пульсация (изменение напряжения) после того когда мы подключили фильтр в виде конденсатора.
Есть 12 вольт переменного тока нужно преобразовать в постоянный . Я знаю ,что нужно паять диодный мост. Но какие нужно диоды и на сколько конденсатор .
seiandroid, если переменный ток высокочастотный (например БП от галогенок и т.п.) то диоды нужны обязательно "шустрые", обычные выпрямительные не пойдут. Если же частота тока не больше чем в сети 220в., то пойдут и обычные выпрямительные. Емкость конденсатора зависит от потребляемого тока и нужного уровня пульсаций выходного напряжения.
Трансформатор будет использоватся , если все получится , для автомобильного усилителя кар-29 . Работать будет от обычного тока в розетке .
На трасформаторе 2 терминала по 3 клеммы . На верхней написано : 0 U1 220 . На нижней : 0 5 12 . на самом трансформаторе написано :
OСМ-0,25У3
РО,25kVA f50(60)Hz
КЛ.ЗАЩИТЫ1 JPOO
ГОСТ 16710-76
78
здрасти, вторичку матать нужно 4 квадрата меди для автомобильного усилка обычным проводом если влезит пощетай.
seiandroid, ни чего не нужно перематывать,у тебя уже есть 12 вольт,это между 0 и 12,тебе нужен мост,я бы поставил Д-242 на не большие радиаторы,хотя бы 5 х 3 см,и электролит на 25 вольт,5-10 тысячь МКФ.
Вопрос знатокам…
Имеется снегоход, в котором заводом не предусмотрен аккумулятор и стартер.
Хочу на снегоход установить GPS и аккумулятор. На снегоходе имеется заводской стабилизатор, то есть 12 вольт ПЕРЕМЕННОГО тока. Купил диодный мост типа вместо дорогого блока выпрямителя. Так вот , что еще нужно для того чтоб был постоянный ток и шёл заряд на АКБ . И вообще как определить сколько ампер будет идти на АКБ?
Всем ответившим заранее спасибо.
Ветеран
Я бы попробовал поставить регулятор от авто, простую "шоколадку". И получится, как на любой машине.
з.ы. И амперметр тоже автомобильный, если интересна сила тока.
Участник
Регулятор есть родной, нужно только выпрямитель. Я взял диодный мост. Но вот есть рабочая схема правда тахометра, но смысл такой же, мне не понятно, что там делает конденсатор.
Вложения
Ветеран
Конденсатор сглаживает импульсы переменного тока.
з.ы. Конденсатор взял бы не на 16 вольт, а побольше. Ну например, на 30 чтобы с запасом.
Участник
Участник
По-моему 50 раз в секунду смены полярности это и так много. Или я действительно не догоняю??
То есть конденсатор ставить полбасу НАДО…
Ветеран
Не совсем правильно выразился. После диодного моста получившийся постоянный ток не совсем так сказать постоянный. Забыл уже как по научному объяснить, попробую по простому. Получается что постоянный ток идёт всё равно импульсами. Вот как выглядит на графике переменный ток (слева) и постоянный после моста (справа). Чтобы сгладить импульсы (волны, которые ты видишь на графике), ставят параллельно конденсатор.
Вложения
Ветеран
По-моему 50 раз в секунду смены полярности это и так много. Или я действительно не догоняю??
То есть конденсатор ставить полбасу НАДО…
Какая смена полярности в постоянном токе? На то он и постоянный, что нет там смены полярности. Не путай с переменным.
Участник
А я и писал про переменный . Теперь ясно про конденсатор. То есть надо взять мост, на 2 контакта кинуть переменку, а с других взять +и- и кинуть на кандёр.
И смело подключать к GPS ,а вот можно кинуть плюс на АКБ? Не будет он кипеть? Или перезаряжаться?
Ветеран
А вот чтобы всё было в порядке и надо регулятор. Насколько я понял "крен" на твоей схеме и есть регулятор? Тогда после него и вешай и аккум. и приборы.
Участник
Ветеран
Ну тогда я бы померил напряжение на выходе на рабочих оборотах и успокоился (или нет ). Лампочки не так критичны к напряжению, чем например ЖПС. Если не ошибаюсь, напряжение на аккум. при работающем двигателе должно быть 14.2-14.4 вольта для его нормальной зарядки.
Ну и кондёр если будет большей ёмкости, не хуже.
з.ы.А ёмкость его на схеме была именно в милли или микро Фарадах? Не перепутал?
Если милли, то и так дохрена, больше не надо
Участник
Участник
Ветеран
Томич
Участник
вахтовик
Ветеран
Наверняка стоит просто стабилизатор. На ЖПС на прямую не подают, тока через преобразователь. Там гдето в районе 5 вольт.
Так понимаю, аккумулятор нужен для постоянной работы навигатора. Работает движок - питание от сети, батарея заряжается, выключен - питание от батареи. Так вот регулятор нужен не только для подзарядки но и что то вроде переключателя. Может нужен какой то отдельный блочок, но схемка будет по сложнее чем простой диодный мост.
Если батарея нужна только для прибора, чего заморачиваться! Её за весь сезон не разрядишь! На крайний случай в гараже подзарядил!
Томич
Участник
Есть фарада, пикофарада, микрофарада, нанофарада. Миллифараду не слышал. После КРЕНки идёт стабилизированных 12 вольт. На другоке напряжение нужна другая КРЕНка.
Всегда прав
нефига подобного..
У гармина разброс в допустимом напряжении тоже аховый.
А про какой снегоход речь?
на моем тоже нет аккумулятора, а два конца под капотом с постоянным током есть..
ЖПС вроде работает
Читайте также: