Как сделать из коробки принтер
Не все начинающие печатники могут позволить себе новый 3D-принтер . Во-первых, это дорого. Во-вторых, нужно понимать, что конкретно данная модель подойдет наверняка. Устройство печати – это не популярный смартфон в магазине. Его не получится пощупать, запустить и попробовать в деле. Вот и выходит, что единственный бюджетный путь в мир трехмерной печати – это сбор 3Д-принтера своими руками.
Почему выгодно собрать 3D-принтер своими руками
Некоторые пользователи считают, что самоделки не имеют право на существование. Возможно, так рассуждают люди, которые просто не умеют и не хотят обращаться с цифровой техникой. Тут стоит привести контраргумент: если пользователь не хочет изучать механику работы принтера, настройку и калибровку устройства – ему быстро надоест это дело. Поэтому сборка аппарата в домашних условиях – это скорее плюс, чем минус.
Если разбирать по пунктам, то получим целый ряд очевидных достоинств:
- Цена. Свой принтер обойдется на порядок дешевле, чем аналог из магазина. Средняя цена готового устройства находится в пределах ₽20 000–30 000. Кит-комплект для сборки девайса из Китая встанет в ₽12 000–15 000. Причем это будет пустая базовая версия, которую еще нужно будет дорабатывать. Собирая принтер самостоятельно, пользователь потратит в 2–4 раза меньшую сумму денег.
- Постепенная сборка, настройка и отладка собственной техники дает множество плюсов. В частности, пользователь учится всему процессу печати. Он познает каждый шаг. Понимает, какое действия последует при заданных параметрах. Может быстро найти проблему и устранить ее.
- Те юзеры, которые владеют покупными и самодельными моделями принтеров, могут с уверенностью сказать, что качество печати между ними не сильно различается. Конечно, если у печатника относительно прямые руки.
- Апгрейд. Собственноручно сделанный принтер легко обновлять и совершенствовать. Он печатает запасные и новые детали сам для себя. Таким образом снимается часть бюджета, плюс идет практика и оттачивание навыка.
- При должной сноровке можно сделать принтер с большей печатной областью. Тогда разница в стоимости между готовым устройством и самоделкой вырастет на порядок.
Конечно, есть и свои минусы, но все они исходят исключительно от самого 3D-мейкера: уровня его знаний и опыта, понимания электротехники, а также навыка владения ручным инструментом. Человек может допустить ошибки, но об этом чуть ниже.
Интересно! Многие китайские стартапы собирали первые коммерческие образцы, делая их на базе других принтеров. Некоторые мини-фабрики и вовсе работали в кустарном режиме.
Чертежи для сборки принтера с нуля: самые лучшие схемы
Здесь мы рассмотрим 2 несложные схемы, при помощи которых можно собрать 3D-принтер в домашних условиях. Уделим немного внимания особенностям построения, основным моментам, которые необходимо учитывать при сборке.
Принтер закрытого типа с корпусом из фанеры. Эта модель сделана с использованием частей рамы от кит-комплекта. За основу подойдет любой набор из Китая. Для жесткости конструкции к ней был добавлен жесткий кожух из фанеры. Такое решение позволило добавить прочности. Это сказалось на точности печати. Плюс на таком устройстве уже есть собственный блок управления с дисплеем. Из схематичного изображения видно, что элементы питания и управления вынесены на заднюю стенку. LCD-дисплей и кнопка включения находятся в передней части. Рельсы оси Y прикреплены сверху к фанерной раме, стол передвигается по оси Z вверх-вниз.
Принтер открытого типа. Это известная схема принтера Graber I3. В ее основе лежит рама из фанеры, к которой крепится подвижная ось Z. Направляющие для принтера закрепляют на вертикальный П-образный каркас. Блок питания и управления можно разместить на задней части неподвижной платформы. Некоторые умельцы устанавливают крепление для катушки филамента на верхнюю часть рамы. Однако такое расположение может незначительно влиять на качество печати. LCD-дисплей находится на передней части устройства.
Пошаговое руководство по сборке подобных принтеров будет расписано в следующем параграфе. Для сборки печатного устройства нужно закупить электронику, электрику, сопло экструдера, Hotend, механические запчасти, крепеж, направляющие, подшипники, валы, кулеры, концевики, пружинки, муфты и ходовые винты. Полный перечень компонентов составляют, опираясь на наличие деталей в магазине, а также отталкиваясь от конечной задумки автора. Здесь необходимо отметить, что каждый принтер – это индивидуальный проект. В данном материале даны только общие схемы сборки.
Важно! Конечный масштаб конструкции может немного меняться. Каждый печатник делает принтер под свои нужды и задачи. Некоторые пользователи вносят в проект дополнения и замечания. Поэтому указанные схемы – это примерный ориентир того, что можно получить, но не точная инструкция по сборке.
Пример по связке электрики и электронике:
- управляющая плата Arduino mega 2560;
- шилд-плата Ramps 1.4 – для соединения всех элементов в цепь;
- шаговые двигатели Nema17 17HS4401;
- печатная головка E3D V6;
- LCD-дисплей LCD 2004.
Указанные компоненты отлично работают между собой, без конфликтов и подвисаний.
Пошаговая инструкция, как сделать 3D-принтер в домашних условиях
Общий алгоритм взят на основе коммерческой модели Prusa I3 Steel. Этот FDM-принтер довольно прост, при этом схема сборки подойдет как для новичка, так и для профи. На основе данного алгоритма можно собрать самодельный аппарат, не боясь пропустить что-либо важное.
- Сборка каркаса или рамы. Это П-образный скелет, который состоит из двух вертикальных и одной поперечной балки. Также в нижней части основания может быть соединительная плашка для усиления жесткости конструкции. Перпендикулярно вертикальным стойкам прикручивают ножки, чтобы рама могла уверенно стоять на плоскости.
- Собираем каретку нагревательной платформы. Укрепляем каркас под будущий стол. Вкручиваем направляющие валы. Устанавливаем каретку на валы.
- Собираем каретки для оси X и Y. Ставим направляющие на вертикальных стойках. Надеваем валы на правую каретку оси Y, после чего фиксируем основную каретку по оси X. Закрепляем валы в левой каретке Y.
- Монтируем двигатели оси X. Ставим муфты на вал. Сначала муфты, потом двигатель под ось X. Устанавливаем ремни. Натягиваем их на двигатели.
- Устанавливаем концевики на все оси.
- Интегрируем электронику. Основной чип Arduino и шилд Ramps. Пока не коммутируем платы между собой. Монтируем LCD-дисплей.
- Ставим нагревательную платформу. После чего можно приступать к монтажу экструдера.
- Теперь пристраиваем блок питания. Его можно закрепить в задней части устройства. Заводим питание электрики на клеммы.
- Выставляем джамперы и драйверы на Ramps. Здесь важно соблюдать положение установки. Джампер устанавливают строго в одном направлении, а именно, подстроечным резистором в противоположную сторону от разъема питания.
- Коммутируем электрику. Схема установки показана выше.
- Ставим вентиляторы и кулеры. Заводим питание на них.
Это общая схема монтажа принтера в домашних условиях. После его отстройки нужно провести калибровку и первичную настройку.
Подготовка к эксплуатации
После сборки и монтажа пользователя ждет еще несколько шагов, которые необходимо пройти для полноценного запуска самодельного устройства:
Это общая схема подготовки печатного устройства к работе.
Ошибки и способы их избежать
Есть ряд ошибок, которые допускают начинающие 3D-мейкеры при сборке, настройке и самой печати. Рассмотрим их:
- Изготовление каркаса кустарным образом. Заготовки для рамы выпиливают обычной ножовкой. Таким способом не получится достичь точных размеров. Появятся зазоры. Части элементов конструкции будут болтаться, люфтить. Все это скажется на качестве печати. Не стоит дешевить на данном пункте. Лучше заказать все детали рамы в лазерной мастерской. Такой резак сделает выверенные детали для рамы с минимальными допусками.
- Использование тонкого материала для рамы. Для построения каркаса берут фанеру, оргстекло, акрил, МДФ. При этом их толщина должна быть не менее 6 мм. В противном случае конструкция может дать трещину. Через этот казус прошел не один десяток печатников.
- Для снижения шума и вибрации, которые исходят от двигателей, стоит использовать резиновые прокладки-демпферы. Это могут быть силиконовые ножки, которые продают для стиральных машин в хозяйственных магазинах. Также это скажется на качестве изготавливаемой модели.
- Отсутствие системы охлаждения. Сильная нагрузка на блок питания, отсутствие вентиляции в области подогреваемой платформы – все это может привести к подвисаниям печати. Не стоит экономить на охлаждении.
- Заказ дешевых компонентов. Не нужно экономить на электрике! Если выйдет из строя хотя бы один моторчик, работа встанет. Это особенно губительно скажется на работе тех 3D-мейкеров, кто делает модели на заказ.
- Выставлять завышенные настройки. Некоторые печатники ставят самую высокую скорость печати. Они наивно полагают, что это не скажется на качестве конечной продукции. Рекомендуем экспериментировать с разными материалами и настройками, чтобы найти золотую середину. Не нужно сразу же загонять принтер. Испортите гору пластика в пустую.
Это большая часть основных ошибок, которые могут сказаться на качестве конечной работы.
Интересно! Естественно, в процессе сборки и первичной настройки пользователь будет сталкиваться с другими трудностями. Но все их можно решить, если не торопиться и делать все последовательно.
Сборка 3D-принтера в домашних условиях – это не такое сложное занятие. Огромное количество людей сэкономили десятки тысяч рублей, изготавливая печатное устройство своими руками. Тем более что это довольно несложный процесс, если делать все четко и по шагам. Еще один плюс сборки в домашних условиях – бесценный опыт, который пригодится при работе на более профессиональном оборудовании.
В закладки
Трёхмерная печать — одно из наиболее перспективных направлений в современной технике.
Она позволяет создавать сложные конструкции из пластика и металла, а так же проверять, моделировать свежие идеи, которые потом будут воплощаться другими способами.
Востребованность специалистов даже в России невероятная. А ещё это замечательное хобби, позволяющее создавать игрушки, домашнюю утварь, сложные ремонтные работы.
Научиться проще простого. Особенно если выбрать правильный путь и правильные инструменты.
Почему 3D-печать проста, но не популярна?
Все, что раньше требовало специальных навыков, теперь сводится лишь к трём. Достаточно уметь:
1. Создавать 3D-модели в любом CAD-пакете.
2. Собирать и обслуживать принтер.
3. Управлять процессом при помощи базовых знаний программирования.
Вот и все пресловутые аддитивные технологии в быту: можно скачать готовую модель для печати, её преобразование в код неплохо выполняет Cura.
Остаётся главное: собрать принтер. И это непросто.
Некоторые конструкции, приобретаемые в виде конструктора или собираемые собственноручно из отдельных комплектующих, требуют к себе не только постоянное внимание во время эксплуатации, но и длительную сборки с трудоёмкой наладкой.
Не лучший способ для старта. В результате технология остаётся уделом гиков, инженеров и некоторых фанатов: любителей настольных игр и владельцев редких автомобилей, которым такой способ изготовления деталей или фигурок позволяет серьезно экономить бюджет.
Умельцев с достаточной мотивацией очень мало, поэтому большинство обращается к тем, кто уже освоил принтеры в силу начальной подготовки и наличия значительного запаса времени.
А может быть иначе, хотя бы для самых простых задач? Может. Трёхмерную печать дома освоит даже маленький ребенок.
Собирать самому или покупать готовый?
Тем не менее и в том случае принтер не печатал идеально прямо из коробки, точнее, сразу после сборки. Тоже самое ждёт большинство готовых комплектов, приобретаемых в виде конструктора.
Что ж, каждый раз такая история. Мой первый Tronxy X3 был собран за несколько дней, после чего потребовал 2 недели на доводку. И ещё месяц на мелкие ремонты, замены комплектующих и повторную отладку.
Впечатление было испорчено: кривые фигурки и детали раз за разом отбивали желание работать. Пришлось менять силовые элементы, направляющие и докупать дополнительные датчики.
Если покупать и собирать по частям, итог будет чуть лучше — можно будет проверить каждый элемент. Но выйдет значительно дольше, а иногда и дороже.
Недорогой и быстрый старт в 3D печати
Для быстрого старта некоторые разработчики комплектов предлагают полностью собранные 3D-принтеры или наборы, скомплектованные из нескольких базовых крупных узлов: чаще всего это печатающий узел, совмещенные оси X и Y, собранные стол для печати и блок управления.
Преимущества на лицо:
1. Набор предварительно собран и проверен.
2. Несущие и силовые элементы проходят отдельный контроль качества.
3. Сборка занимает намного меньше времени.
Кроме того, обычно такие микроконструкторы на 10-15 элементов предназначены для школьников, поэтому поставляются с упрощенной прошивкой, полным набором софта и дополнительными функциями, упрощающими работу.
Какие есть принтеры для быстрой сборки
При детальном исследовании рынка на eBay, Amazon и AliExpress можно найти массу комплектов для быстрой сборки принтера.
На данный момент наиболее актуальными моделями можно считать JGMaker Magic и Tronxy XY-2 Pro.
Обе модели предварительно собираются поставщиком, проходят отладку, проверку печати, а потом разбираются на базовые узлы для последующей транспортировки и работы на месте.
Мелкие отличия касаются собственно конструкции и разделения на узлы.
Я выбрал первую модель (пожалуй, сказался негативный опыт с первым, ещё не до конца побежденным принтером Tronxy).
Преимущества готовых принтеров на примере
JGMaker Magic делится на:
1) П-образная несущая рама,
2) ось X с направляющей,
3) двигатели с каретками,
4) стол с осью Y и блоком управления.
Стол и размещенные на нём узлы уже связаны жгутами питания. Пользователю остается состыковать крупногабаритные узлы с помощью штатного крепежа.
Для бюджетного принтера Magic неплохо оснащен. Есть:
▹ большая область печати 220×200×250 мм;
▹ полностью металлическая конструкция движущихся частей;
▹ встроенные в стол блок питания и плата управления;
▹ датчик наличия филамента и автоматическая пауза печати;
▹ функция продолжения печати при сбросе питания.
Собрал принтер за полчаса. Как это было
Сборка и настройка JGMaker Magic проста до безобразия. Все операции по замерам, которые сопутствуют обычным китайским принтерам, исключены.
Ремни заранее зафиксированы на нужно длине, профиль аккуратно отрезан и предлагает единственный способ сборки без возможности регулировки, жгуты и клеммы подписаны. Нужно только собрать.
Сборка занимает этапов:
1. Распаковка и освобождение деталей от транспортировочной плёнки.
2. Установка первой каретки на профиль оси X.
3. Монтаж печатной головки на ось X.
4. Завершение сборки оси Х установкой второй каретки и приводного ремня.
5. Монтаж двигателя оси Y.
6. Установка второго вертикального профиля.
7. Соединение осей X и У.
8. Установка шпилек — ходовых винтов (требует контроль угла установки).
9. Фиксация верхней планки и завершение механических работ.
10. Подключение проводов по маркировке согласно инструкции.
11. Интеграция трубки подачи пластикового прутка в печатную головку.
12. Вставляем комплектную флеш-карту в принтер.
13. Включаем в сеть 220В.
Готово, можно печатать. В зависимости от навыков, процесс занимает 15-30 минут и требует только инструментов из комплекта принтера.
Проверка печатью: работает из коробки
Для печати необходимо подключить принтер в сеть и скачать Cura для необходимой платформы (Linux 64bit, Windows, macOS).
Предварительная настройка требует только указать область печати. Далее требуется подгрузить модель в Cura, сделать разметку модели и сохранить файл с кодом на карту памяти.
Печать осуществляется с помощью экрана принтера (используется прошивка Marlin). Удобно, понятно и просто.
Перед печатью можно прямо из меню откалибровать принтер, проверить его настройки или напечатать тестовый элемент, с которыми комплект на удивление неплохо справляется.
Если нет — сайт производителя предлагает обратиться с вопросом. Потребуется только код с коробки/блока управления.
Качество печати из коробки сносное — на продажу не подойдёт, но для обучения и личных целей в самый раз.
Что предпочесть и с чего начать?
JG Maker Magic подойдёт для печати большинством популярных материалов, доступных в прутке, исключая деревосодержащие и поликомпонентные.
Также возможно доработка устройства автоматическим датчиком уровня для калибровки печатной головки относительно стола. Не лишним будет установка второй оси для перемещения стола.
Впрочем, всё это может потребоваться нескоро: принтер готов к работе даже с заводскими настройками, поменяв их уже после того, как на практике будут освоены основные понятия процесса.
При покупке в мае он обошелся мне в 14 000 рублей. Стоимость варьируется от курса и близости распродажи, но при желании, примерно в эти деньги его можно взять и сейчас.
Среди альтернатив стоит отметить уже упомянутый Tronxy XY-2 Pro с цветным экраном управления, бОльшей областью печати и наличием индукционного датчика калибровки.
Взамен придётся пожертвовать точностью (0.05 мм у Magic против 0.1 мм Tronxy). Tronxy собирается дольше, поскольку вся рама идёт в разборе. Теоретически, это может привести к проблемам при печати. Прошлый опыт с аналогичным устройством говорит сам за себя.
Субъективно, базовая прошивка Magic поинтереснее, как и стабильность печати.
Желательно если у него будет подвижный стол с автоподогревом, датчик смены филамента и концевой выключатель для определения уровня.
Так что стоимость входа в новую профессию оказывается куда ниже, чем может показаться. А между тем, за ней будущее: конструктивно ЧПУ-станки и профессиональные устройства для 3D-печати отличаются незначительно.
P.S. Среди наших читателей есть те, кто использует 3D-печать на работе или в виде хобби?
В закладки
Подробное изготовление ЧПУ из принтера, который сделать легко и недорого. Такой агрегат сможет выполнять различные функции. Об этом в нашем материале.
Здравствуйте, дорогие друзья! Сегодня мы расскажем Вам про то, как создать ЧПУ из принтера. Основной причиной того, что сейчас так часто в интернете предлагают переделать из принтера или сканеров самодельные устройства, является то, что многие современные периферийные устройства для ПК настолько сложны с функциональной точки зрения, что в переделанном виде позволяют создавать станки, способные выполнять удивительные задачи.
Приступаем к изготовлению
Чтобы начать изготавливать станок ЧПУ из старого принтера, вам потребуются некоторые запчасти, которые входят в струйные принтеры:
- Приводы, шпильки, направляющие от принтера (желательно использовать несколько старых принтеров; принтеры необязательно должны печатать);
- Привод от дисковода.
- Материал для создания корпуса – фанера, ДСП и т.п.
- Драйверы и контроллеры;
- Материалы для крепежей.
Полученные станки с числовым программным управлением смогут выполнять различные функции. Всё, в конечном итоге, зависит от устройства, которое будет располагаться на выходе станке. Чаще всего из струйных принтеров делают фрезерный станок с ЧПУ, выжигатель (при помощи установки выжигателя на выходе устройства) и сверлильные машины для создания печатных плат.
Основой является деревянный ящик из ДСП. Иногда используют готовые, но не составит труда сделать го самостоятельно. Необходимо учесть, что внутри ящика будут располагаться электронные компоненты, контроллеры. Собирать всю конструкцию лучше всего при помощи саморезов. Не забывайте, что детали нужно располагать друг относительно друга под углом 90 градусов и крепить максимально прочно друг к другу.
Создание самодельного станка
Прежде, чем переделать принтеры или сканеры в мини станки, которые смогут выполнять фрезерные работы, следует максимально точно собрать раму конструкции и ее основные составляющие.
На верхнюю крышку устройства требуется установить главные оси, которые являются важными компонентами среди всех профессиональных станков. Осей должно быть всего три, начало работы необходимо производить с крепления оси у. Для того чтобы создать направляющую используют мебельный полоз.
Отдельно отметим создание ЧПУ из сканера. Переделка этого устройства такая же, как и, если бы, под рукой был старый струйный принтер. В любом сканере, есть шаговые двигатели и шпильки, благодаря, которым и производится процесс сканирования. В станке нам пригодятся эти двигатели и шпильки, вместо сканирования и печати будет производится фрезерование, а вместо головки, которая перемещается в принтере, будет использоваться движение фрезерного устройства.
Для вертикальной оси, в самодельном ЧПУ нам пригодятся детали из дисковода (направляющая по которой перемещался лазер).
В принтерах есть так называемые штоки, именно они играют роль ходовых винтов.
Вал мотора должен быть соединен со шпилькой при помощи муфты гибкого типа. Все оси необходимо прикреплять к основаниям, выполненным из ДСП. В конструкциях такого типа фрезер перемещается исключительно в вертикальной плоскости, при этом сдвиг самой детали происходит по горизонтали.
Электронные компоненты будущих станков
Это является одним из самых важных этапов конструирования. Электроника самодельных машин является ключевым элементом управления всеми двигателями и самим процессом.
Работы, которые будут выполняться будущим станком и процессы, возникающие во фрезерном и сверлильном механизмах – очень разнообразны и точны, поэтому нам понадобиться надежный контроллер и драйвер.
Самодельная машина может функционировать на отечественных К155ТМ7, их нам понадобиться 3 штуки.
К каждому драйверу идут проводки от своей микросхемы (контроллеры независимы).
Шаговые двигатели в самодельном аппарате должны быть рассчитаны на напряжение, не превышающее 30-35 В. Часто случалось так, что при повышенной мощности, советские микросхемы-контроллеры перегорали.
Блок питания идеально подходит от сканера. Его нужно подсоединить к блоку к кнопке включения, контроллером и сами устройством (фрезер, дрель, выжигатель и так далее).
Главная плата управления (материнская плата для станка ЧПУ своими руками) должна быть подключена к персональному компьютеру или ноутбуку. Именно при помощи компьютера станок сможет получать четкие задания и превращать их в трехосевые движения, создавая конечные продукты. Идеальным будет программа Math3, которая позволяет создавать эскизы. Также отлично подойдут профессиональные программы для векторной графики.
Конечно, все зависит от вашей фантазии и прочности (грузоподъемности) корпуса и рамы. Однако, чаще всего ваш аппарат сможет разрезать фанеру толщиной менее 1,5 см, трехмиллиметровый текстолит или пластик.
Сегодня новые технологии появляются чуть ли каждый день. За прошедшее десятилетие люди увидели бесчисленное множество инноваций, которые реально изменили окружающий мир. Возможно, одним из самых монументальных стало изобретение 3D-принтера, устройства, которое может создавать реальные, осязаемые 3D-объекты на основе деталей цифрового дизайна. Существует много типов 3D-принтеров, каждый из которых использует различные материалы для печати, включая пластмассы, металлы, керамику, продукты питания (шоколад) и многое другое.
Многие пользователи хотели бы иметь такую новинку у себя дома. Как раз на это и рассчитывают производители, выпуская различного уровня наборы для создания принтера с нуля для продвинутых пользователей. Перед тем, как сделать 3Д-принтер, они тщательно изучают свои возможности и подбирают нужную модель в интернете.
История 3D-печати
У 3D-печати была длинная история, в ходе которой он имел различные названия, такие как стереолитография, трехмерная укладка, трехмерная печать. Последнее название прижилось и стало наиболее распространенным. В конце 1980-х и начале 1990-х годов начался рост производства присадок, используемых для быстрого прототипирования, известного как RP. Печать на базе этого расходника занимает время от нескольких часов до нескольких дней, в зависимости от выбранного проекта. RP-модели создаются с помощью автоматизированного проектирования, известного как CAD.
Перед тем как сделать 3Д-принтер, подбирают Soft-машины, способные самостоятельно определять способ создания макета. Таким образом, процедура построения изделий, печатающихся по слоям, стала известна, как трехмерная печать. Первая 3D-печать состоялась в Массачусетском технологическом институте. В начале 1990-х годов MIT инициировал практику, которую сертифицировали, как 3DP, после чего, собственно, и началась история трехмерной печати. В феврале 2011 года Массачусетский технологический институт получил лицензии на 6 корпораций и предложил 3DP для своих продуктов.
Материалы для 3D-печати
Процесс подбора печатающих материалов для 3D-печати начался уже с момента создания принтера. Сегодня промышленность предлагает довольно большой выбор расходников. Перед тем как сделать 3Д-принтер, нужно уметь выбрать правильный тип материалов для печати:
- Акрилонитрилбутадиенстирол (ABS) - популярный материал для первых трехмерных моделей. Он очень прочный, немного гибкий и может легко быть экструдирован, что делает его идеальным для этого типа печати. Недостатком ABS является то, что он требует более высокой температуры, чем, например, материал PLA. Для печати материалов ABS обычно используется температура 210-250 0 C.
- Полимагнитная кислота (PLA) является еще одним распространенным материалом среди энтузиастов 3D-печати. Это биоразлагаемый термопласт, который получают из возобновляемых ресурсов. В результате PLA-материалы более экологичны среди других пластмасс. Еще одной особенностью PLA является его биосовместимость с человеческим телом, что нужно учитывать, перед тем, как сделать 3Д-принтер для использования в домашних условиях. Структура PLA сложнее, чем у АБС, и материал плавится при 180-220 0 С, что значительно ниже, чем у АБС.
- ПВА-волокна (поливиниловый спирт) легко печатаются и используются для поддержки объекта во время процесса печати для моделей с выступами, которые обычным образом не могут быть напечатаны. Этот тип нити является отличным материалом для 3D-принтера с двойным экструдером. Он основан на поливиниловом спирте, поэтому обладает хорошими свойствами, основными из которых являются нетоксичность и способность к биологическому разложению после растворения в воде. Именно этот материал создает перспективу бизнеса на 3Д-принтере.
Пользователю необязательно печатать в 3D с пластиком. Теоретически можно печатать объекты с использованием любого расплавленного материала, который затвердевает достаточно быстро. В июле 2011 года исследователи из Университета Эксетера в Англии представили прототип пищевого принтера, который может печатать 3D-объекты с использованием расплавленного шоколада.
Формат файлов для печати
Печать на обычном принтере возможна, если он понимает формат документа. Эта способность аналогична и для 3Д-моделей, поэтому, изготавливая 3D-принтер своими руками, предварительно выбирают формат печати будущих моделей. STL-файл является одним из самых популярных форматов файлов для 3D-принтеров. Он поддерживается большим разнообразием устройств, и многие файлы можно найти в репозиториях трехмерных моделей, выполненных на базе этого формата.
STL означает STereoLithography или Standard Tessellation Language. Первоначально он был одним из основных форматов в программном обеспечении САПР, созданных системами 3D. В настоящее время этот формат можно найти во многих пакетах программного обеспечения для трехмерной печати, его просто и легко выводить, и это одна из причин, почему он стал популярным.
OBJ (Object Files) - это еще один популярный формат файлов принтеров у пользователей, которые делают 3D-принтер своими руками. Первоначально он использовался в пакете анимации Advanced Visualizer, разработанном Wavefront Technologies. OBJ-файл представляет собой трехмерную геометрию и содержит несколько различных атрибутов:
- вершинные нормали;
- геометрические вершины;
- многоугольные грани;
- координаты текстуры.
Файлы объектов печати могут быть либо в ASCII (.obj), либо в двоичном формате (.mod).
Дизайн 3D-принтера
Первым шагом в процессе проектирования принтера, перед тем как собрать 3D-принтер, является поиск самого простого дизайна, например, макетов Maker Mendel или RepRap, которые в качестве образца для корпуса применяют форму коробки. Некоторые изобретатели используют для основания принтера обычные деревянные или пластиковые ящики, элементы которых можно будет менять местами, подгоняя под макеты будущих трехмерных печатных деталей. Эта конструкция станет будущей основой для принтера.
Затем выбирают конфигурацию ремня, который будет обеспечивать эффективную базовую конструкцию. Для способности взаимодействовать с Arduino выбирают контроллер. 3D-модели были разработаны с использованием SolidWorks. Конструкцию собирают по чертежам, предварительно изготовив металлические и деревянные детали для 3D принтера, как указано, например, в чертежах ниже.
3D-объект нуждается в трех осях, которые должны быть представлены в трехмерном пространстве печати. Задача состоит в том, чтобы любая точка в пространстве была представлена тремя координатами, которые обычно перечисляются в порядке X, Y, Z. Каждая координата предоставляет информацию об одном направлении или оси, каждая из которых перпендикулярна двум другим. Одна координата указывает положение вдоль линии, две в плоскости и три в пространстве.
В 3D-печати используются различные механизмы для маневра на определенной оси, что четко обозначено на чертежах 3Д-принтера. Они имеют две общие системы: декартову и дельту, используют технологию FDM, обладают различными механизмами навигации экструдера в пределах пространства для печати. В сплавленном моделировании осаждения для создания слоев используется полимер термического отложения. Этот процесс очень зависит от осей 3D-принтеров X, Y и Z.
В зависимости от рассматриваемого принтера горячий конец будет перемещаться в одну, две или все три из этих осей. Таким образом, система оси обеспечивает работу 3D-принтера и дает глубину и дизайн объекта. Если бы были только две оси, допустим, оси X и Y, тогда дизайн объекта был бы плоским, что было бы похожим на печать с помощью струйного принтера. Обычно оси X и Y соответствуют боковому движению, а ось Z соответствует вертикальному движению. Чтобы избежать путаницы при сборке 3Д-принтера, принимают за основу такое положение осей:
- Z определяется, когда пользователь стоит лицом перед 3D-принтером, тогда инструмент, движущийся вверх и вниз, является осью Z.
- X - это инструмент, перемещающийся влево или вправо, а инструмент, перемещающийся назад и вперед - является осью Y.
Изготовление рамы устройства
Отрезают линейные стержни по размеру, согласно чертежам. Например, средние стержни - 260 мм, а боковые стержни - длину 250 мм. Сдвигают боковые линейные стержни в блоки, они будут осью Y. Помещают линейный подшипник сверху каждого блока и отмечают, где должны проходить отверстия. Просверливают эти отверстия сверлом под винты, чтобы в дальнейшем удерживать подшипники. Отмечают отверстия в самой тонкой части блока и просверливают два отверстия диаметром 8 мм.
Помещают средние линейные стержни в эти отверстия - это и будет ось X. Поворачивают блок так, чтобы линейный подшипник был внизу. Укладывают два временных шкива в центр между монтажными отверстиями для линейного подшипника. Помещают винт через зубчатые шкивы, используя отвертку, чтобы зафиксировать их на корпусе. Эти блоки позволяют экструдеру для 3Д-принтера перемещаться вдоль оси Y. Это самый простой макет корпуса принтера. Можно сделать рамку из экструдированного алюминия с 8 отверстиями в ластовицах, что хорошо работает и обеспечивает жесткую и стабильную конструкцию.
Этот проект переработан для использования линейного рельса и соответствующего подшипника. В салазках имеются отверстия для крепления стандартных концевых выключателей для оси X и Y.
Монтаж оси Z
Берут опорный блок сборной плиты. Отмечают блок с обеих сторон в центре, на 2 см от самого длинного края. Выполняют отверстие сверлом. Закрепляют гайками все винты в монтажных отверстиях. Крепления должны быть жесткими. Помещают соединители вала на два оставшихся шаговых двигателя и используют шестигранный ключ, чтобы затянуть их надлежащим образом.
Помещают винты на другом конце муфты и снова затягивают их. Используют Zip-галстуки для закрепления шаговых двигателей на дне корпуса. Помещают опору монтажной пластины на резьбовые винты и отпускают винты, чтобы опустить плиту. Сдвигают верхние пластины над резьбовыми соединениями, чтобы убедиться, что все на месте.
Создание оси X
Теперь собирают детали для натяжного устройства X-оси. Эта часть будет вставлена в прорезь X-оси. Один болт будет использоваться для натяжения ремня, а другой для крепления стальных стержней на X-оси. Используют сверло 8 мм для выравнивания 4 отверстий для вставки стержней оси X.
Прежде чем продолжить сборку, собирают другую часть, необходимую для крепления горячего конца экструдера. Добавляют линейные подшипники к печатной части и закрепляют их кабельными стяжками в поясе, который управляет осью X. Для того чтобы продолжить создание оси X устройства 3Д-принтера, сначала завершают монтаж оси Z.
Используют гладкие стальные стержни толщиной 8 мм x 320 мм и сдвигают линейные подшипники колесных и ходовых частей оси X внутри каждого из них. Чтобы это выполнить, может понадобиться ослабить части Z-AXIS-TOP. Ось Z закончена, и можно перемещать гладкие стальные стержни для оси X, не забывая прикрепить X-CARRAGE и пропустить горизонтальные стержни оси X через него.
Ходовая часть оси Х будет идти слева, а правая сторона будет иметь холостой ход оси Х вместе с частями шкива и натяжителя. На этом этапе можно присоединить шаговый двигатель оси X с шестерней GT2, и добавить ремень. Теперь используют болты для крепления стержней оси X на месте, а болт M4 натягивают ремень.
Закрепление Y-MOTOR оси
Когда основание рамки будет построено, можно продолжить завершение закрепления оси Y. Для этого понадобятся следующие детали для 3D-принтера:
- NEMA 17 HR 0,9 градуса на шаг 4,0 кг/см шагового двигателя.
- Номер детали: 42BYGHM809.
- 20-ти зубчатый шкив GT21 метр газораспределительного механизма GT2.
- Винты 5x M3 x 12 мм.
- Шайбы - 4x M3.
- Гайки - 2x M3.
Начинают с присоединения шагового двигателя к части Y-MOTOR на задней части рамы. Также прикрепляют шкив GT2 к валу двигателя. После чего нужно его отрегулировать.
Далее подключают Y-BELT-HOLDER к платформе рабочей площадки. Используют винты M3 x 12 мм с шайбами и гайками. Ось Y будет перемещена с использованием ремня GT2. Теперь прикрепляют ремень GT2 и оборачивают его вокруг шкива GT2. Закрепляют ремень к Y-BELT-HOLDER с помощью кабельных стяжек, и регулируют натяжение ремня с помощью винта M4 на Y-образном упоре.
Установка экструдера
После того как готов стол для 3Д-принтера, устанавливают экструдер. Помещают два линейных подшипника на средние линейные стержни. Проверяют, насколько далеки друг от друга осевые подшипники. Отмечают, где они сели и где должны быть отверстия. Выполняют эти отверстия с помощью сверла. Закрепляют линейные подшипники винтами. Далее нужно отметить середину блока от линейных подшипников и выполнить другие монтажные отверстия. Помещают направляющие стержни против середины четырех отверстий. Передвигают экструдер, чтобы закрепить экструдер на месте. Эта конструкция позволит в дальнейшем снимать или модернизировать его.
Экструдер состоит из термистора, который измеряет температуру, нагревательного элемента и головки. Термистор и нагревательный элемент входят в отверстия на головке экструдера, как показано на рисунке. После окончания монтажных работ осуществляют соединение электрической схемы экструдера.
Настройка программного обеспечения
Когда механическая и электрическая части устройства собраны, приступают к установке программного обеспечения и начинают подготовку платы RAMPS 1.4. Некоторые модели платы уже собраны производителем, а другие требуют, чтобы пользователи припаяли несколько разъемов. Плата RAMPS должна иметь разъемы с перемычками. Шаговые двигатели перемещаются ступенчато, что позволяет им быть очень точными.
Аккуратно соединяют платы RAMPS с Arduino. Убеждаются, что USB-устройство Arduino находится под контактом D10. Чтобы начать работу, загружают последнее официальное программное обеспечение Arduino Environment. При загрузке просто дважды нажимают на ссылку, чтобы начать установку, далее соглашаются со всеми параметрами по умолчанию, в том числе по установке драйвера USB.
Проводят подключение Mega 2560 к компьютеру и тестируют его. Вставляют USB-кабель в Mega и компьютер. При этом не нужен отдельный адаптер, будет использован блок питания для 3Д-принтера. Компьютер сам установит необходимые драйвера из программного обеспечения, установленного ранее. Пользователь может увидеть, какой COM-порт установлен.
Если программное обеспечение использует локализованный язык, можно изменить его, выполнив действия: Файл -> Настройки -> Язык редактора -> Выбор языка. Перегружают программное обеспечение Arduino. Выполняют первоначальную настройку Mega. Выбирают модель: Инструменты -> Совет -> Arduino Mega или Mega 2560. ПК запоминает этот выбор для использования его в будущем.
Далее выполняют настройку прошивки Marlin. Открывают Arduino IDE: Файл -> Открыть, далее переходят в папку Marlin-Development и в папку Marlin. Выбирают и открывают файл Configuration.h или Marlin.ino. Открывается новое окно, содержащее Marlin.ino и открывают вкладку Configratuin.h.
Сохраняют файл, если были внесены какие-либо изменения. Устанавливают скорость. Базовая скорость по умолчанию составляет 250000. Если это создает какие-либо проблемы с компьютером, то можно изменить ее на 125000.
Приступают к определению температурных настроек. Существует список с 20-25 различными вариантами для каждого датчика. Ниже перечислены параметры, которые определяют входы датчиков на плате RAMPS 1.4. По умолчанию определяется SENSOR_0 с опцией 1, которая означает, что // 1 - это 100-кратный термистор - лучший выбор для EPCOS 100k (4,7 тыс. Pullup), или, другими словами - это стандартный термистор, используемый для измерения температуры для 3D-принтеров.
TEMP_SENSOR_0 - это термистор Hot-end. Другие датчики сконфигурированы с опцией 0, что приводит к отключению:
Определяют минимальную и максимальную температуру горячей и холодной рабочей поверхности стола. Минимальные настройки по умолчанию равны 5, в этом режиме просто проверяется работа термистора, чтобы убедиться, что провода не расплавлены или повреждены иным образом.
Можете определить MINTEMP как 0, прописывая:
Максимальная температура по умолчанию:
Если печатается ABS и нужна температура в 230 0 С или около того. Удаляют // на линии с помощью BED_MAXTEMP. Если пользователю нужны более сложные настройки, то обращаются к инструкции по наладке программного обеспечения на профильном сайте.
Многие уже считают, что трехмерная печать в будущем - это не модная волна амбициозных, пластиковых трюков, а революция в обрабатывающей промышленности и мировой экономике. Хотя трехмерная печать, безусловно, позволит пользователям изготовить изделия для личного употребления, но есть предел их возможностей. Не так многое сегодня можно выполнить самостоятельно с дешевым принтером и трубкой из пластика. Реальные экономические выгоды и рост бизнеса на 3Д принтере, скорее всего, будет наблюдаться, когда 3D-печать будет широко принята крупными компаниями в качестве центрального компонента обрабатывающей промышленности.
Читайте также: