Как сделать из компа ракету
Как ускорить работу компьютера? Видео для тех у кого старый или слабый компьютер! Несколько реально полезных .
Как оживить старый ноутбук? Легко! Достаточно поменять антикварный жёсткий диск на SSD (это самый действенный .
Сегодня покажу как ускорить старый ноутбук в 10 раз. Для этого сделаем апгрейд ноутбука. Установим новый процессор .
Пневмогидравлическая ракета - это безопасный и увлекательный физический эксперимент. Ракета движется за счет .
Помощь в развитии канала! WEBMONEY: ▻ R370347400530 рублики ▻ Z164736399803 доллары Голосовой ДОНАТ на .
Всем привет! Давайте знакомимся. Меня зовут Данил, мне 17 лет , живу в России) Группа по покупке аккаунтов имени .
Доброго времени суток,в этом видео про-апгрейд ноутбука,как увеличить fps,охлаждение ноутбука,как улучшить ноутбук .
Как сделать самодельную ракету с использованием сахара и кошачьего наполнителя, которые взлетает на высоту более .
Всем привет! Сегодня будет видео, в котором я чисто из личного интереса "сделаю или нет" попробовал переделать .
Если у вас нет денег на новый ПК и вы не знаете что делать, не отчаивайтесь , выход есть! Решение данного вопроса я .
Из видео вы не просто узнаете как ускорить компьютер, но и получите полную информацию о том, с помощью каких .
Как прокачать, апгрэйднуть старый недорогой компьютер? В этом видео покажу как вдохнуть новую жизнь в дешман ПК .
После обвала мировых фондовых рынков, ослабления рубля и всеобщей эпидемии, техника в наших магазинах заметно .
Как построить ракету у себя дома? Сможет ли она долететь до космоса? Обо всех тонкостях ракетостроения - в этом .
Рассказали 5 советов, как ускорить работу Windows 7, чтобы компьютер перестал тормозить. Наши соцсети: ВКонтакте: .
Реальный гайд о том ка запускать тяжелые игры даже на слабом и старом компе. Бонус в видео я показываю как я поднял .
Всем привет! Сегодняшний выпуск посвящен непростой ситуации. От ноутбука осталось мало чего целого и в рабочем .
сборка и запуск самодельной карамельной ракеты, которая пронзает небо и землю. в этом видео вы увидите, как сложно .
Здесь ее фрезеруют с обеих сторон, удаляя все неровности и дефекты. На этом этапе в стружку превращается примерно 120 килограммов сплава АМг6. Похудевшую, но уже ровную плиту гнут — вальцуют, превращая ее в сектор цилиндра, а затем сваривают с двумя другими. Получившееся кольцо отправляется в другой цех, который почти целиком занимает фрезерный станок высотой в три человеческих роста.
Вертикальный фрезерный станок, который вырезает вафельный фон на уже сваренной обечайке бака.
Но можно делать иначе.
Труба
Ракета — это металлическая труба с топливом. В нижнем конце этой трубы стоят ракетные двигатели, в верхнем — полезная нагрузка, скажем, ядерная боеголовка, спутник или космический корабль.
Конечно, если присмотреться, начинаются нюансы. Если свернуть лист бумаги в трубку и склеить шов липкой лентой, такая труба удержит на себе небольшую стопку книг, если правильно распределить их вес. Этот тип конструкции, где обшивка является несущим элементом, в авиации называют монокок. Но стоит этой конструкции чуть-чуть отклониться от идеальной цилиндрической формы, прогнуться, она моментально схлопывается.
Чтобы это предотвратить, нужно или увеличивать толщину листа, или добавить внутрь силовой набор — ребра жесткости, продольные (стрингеры) и поперечные (шпангоуты). Таким образом из монокока вы получите уже полумонокок, очень популярный среди авиаконструкторов. Если подойти близко к любому самолету, вы увидите на его фюзеляже сотни и тысячи заклепок — это они держат обшивку на тех самых стрингерах и шпангоутах.
The Smithsonian Institution
Imperial War Museums
Imperial War Museums
Банка
После войны ракеты фон Брауна попали в руки к советским и американским инженерам. И они почти сразу задались вопросом: зачем в одну емкость (корпус ракеты) вставлять вторую (топливные баки)? Разве нельзя обойтись только одной?
Помимо очевидных преимуществ — снижение массы, упрощение конструкции — это инженерное решение давало возможность увеличить прочность баков за счет наддува. С этим эффектом сталкивается каждый из нас, когда пробовал смять банку газировки.
Смять пустую алюминиевую банку в плоский блин (например, наступив на нее ногой) намного проще, чем полную. Жидкость (и газ, если внутри газировка) давит на банку изнутри, что позволяет ей выдержать уже больше 200 килограммов.
Для того, чтобы такая ракета была прочной, с ней поступили точно так же, как с банкой выше: начали наддувать пустое пространство газом. Большая часть ракет, старт которых вы видели, представляют собой такие алюминиевые банки, только очень большие.
Несущие баки и наддув позволили ракетостроителям убрать из ракеты стрингеры и шпангоуты, избавиться от точечной сварки, а вместе с тем тысяч слабых место в обшивке, которая и так была тоньше бумаги.
Вафля
Типы вафельного подкрепления
Бак горючего (несимметричный диметилгидразин — НДМГ) первой ступени ракеты УР-200.
Так инженеры нашли практически идеальное решение проблемы — как сделать баки с силовыми набором, но при этом не ослаблять обшивку ни сваркой, ни клепкой: нужно просто сделать силовой набор вместе с обшивкой. Этот метод стал стандартом для большинства тяжелых ракет по всему миру. Но платить за это решение пришлось временем, ресурсами и, разумеется, деньгами.
Как это теперь собрать
Большинство методов сварки предполагает, что вы расплавляете электрической дугой или газовой горелкой края двух металлических деталей, соединяете их, а когда расплавленный металл застывает, две эти детали оказываются единым целым, увы, единство это мнимое, и такой способ соединения не намного лучше традиционной клепки. В толще сварного шва могут остаться микроскопические пузыри, трещины и другие дефекты. Кроме того, расплавленный и застывший металл может стать менее прочным.
Фрезерованный лист для ракетного бака на заводе ULA
Фрезерование листов алюминия на заводе ULA
Готовая обечайка бака на заводе ULA
В случае, если сварной шов не подвергается большим нагрузкам, этим можно пренебречь, но в ответственных случаях приходится заниматься тщательной проверкой швов: дефекты ищут при помощи рентгена, ультразвука, магнитного порошка и десятков других инструментов. Но даже хорошие швы все равно остаются слабым местом, и их приходится усиливать, увеличивая толщину деталей в месте соединения.
Три главных буквы
Это значительно лучше традиционной электросварки. Например, если аргоно-дуговая сварка обеспечивает прочность шва в 160-170 мегапаскалей, то шов от СТП на тех же листах дает 250 мегапаскалей (при исходной прочности листа 300 мегапаскалей).
Аэрокосмическая отрасль давно заметила эту технологию: уже в 1999 году стартовала ракета-носитель Delta II, где компания Boeing применила СТП для сварки межбакового переходника, а в 2001 году полетела такая же ракета со сваренными тем же методом баками.
Станок для сварки методом СТП бака ракеты Delta II. Внутри виден традиционный вафельный фон.
А. Я. Ищенко и др., Автоматическая сварка, 2007
Примерно тогда же СТП в 2001 году — начали использовать для сварки внешнего топливного бака шаттлов, восемь швов в баке для жидкого водорода и четыре — для жидкого кислорода, всего почти 800 метров.
И снова труба
Сегодня уже не приходится сомневаться, что эти технологии работают: Falcon 9 успешно летают и по многу раз — недалек тот день, когда одна из первых ступеней ракеты совершит десятый в своей биографии полет. Много говорят о технологических хитростях Маска, которые позволили ему сделать такую ракету: о переохлажденном топливе, что позволяет увеличить объем горючего на борту, не увеличивая объем баков, говорят о решетчатых рулях, говорят о двигателях, способных к многоразовому включению и дросселированию, но почти никто не говорит о СТП и стрингерах. Хотя именно это небольшое новшество может изменить всю технологическую цепочку производства ракет.
Силовой набор в обечайках бака ракеты Falcon 9
Как именно — можно увидеть в цехе Центра разработок С7, который сейчас создает ракету легкого класса.
Выращенный с помощью 3D-печати вафельный силовой набор — до чистовой фрезерной обработки и после.
Робот-манипулятор сваривает бак
Он и его коллеги смогли сильно упростить и саму технику СТП — они используют станки собственного производства и роботы-манипуляторы. Роботы дорогие, признает Снытин, но даже так, по его словам, получается дешевле традиционной технологии на порядок.
От легкой до средней
Разработчики решили оставить на потом решение самой сложной задачи — создание двигателей и купить серийные у одного из российских предприятий (контракт пока не подписан, и название контрагента пока не раскрывают). Композитный обтекатель будет делать одна из дочек S7 на базе технологий компании Epic Aircraft. Центру остается создать все то, что находится между двигателями и головной частью ракеты — баки и систему управления.
На первой стадии предполагается построить ракету легкого класса, способную выводить на низкую орбиту более тонны полезной нагрузки. Если все пойдет по плану, то полетит эта ракета уже в ближайшие несколько лет. Для будущей ракеты среднего класса, которая сможет выводить шесть тонн на геопереходную орбиту при старте с экватора, Центр планирует разработать собственный двигатель.
Прототип бака изнутри.
Для баков ракеты планируется использовать новый сплав 1580 в отожженном состоянии — экспериментальный магнийсодержащий сплав, который отличается от традиционного АМг6 добавлением 0,1 процента скандия для повышения прочности. В отличие от нагартованного АМг6 его прочность не снижается при нагреве, а значит первую ступень можно потенциально сделать возвращаемой, она выдержит прохождение сквозь атмосферу, не потеряв качества.
Почти готовое днище бака, напечатанное вместе с силовым торцевым шпангоутом
Егор Морозов | 17 Августа, 2018 - 14:18
Тем не менее, ракеты полагаются на некоторые удивительно простые физические принципы. Хотя шаги ниже точно не дадут вам полноценного ракетного двигателя, они пояснят, почему мы делаем ракеты так, как мы делаем, и никак иначе.
Шаг первый: сохранение импульса
При движении по поверхности Земли или по воздуху мы полагаемся на сохранение импульса, чтобы двигаться вперед. Когда мы отталкиваемся от земли или машем крыльями в воздухе, то земля или воздух в свою очередь отталкиваются от нас. Поскольку Земля несколько больше нас, сохранение импульса означает, что мы сдвигаемся сильно, а вот Земля — едва ли.
Но космос — это совсем другая история. В этом холодном вакууме не на что давить. Ноги, крылья, пропеллеры и самолеты бесполезны. Но это не означает, что сохранение импульса внезапно перестает работать. Вместо этого, чтобы двигаться вперед, нам, по сути, нужно взять импульс с собой.
Тут тот же принцип, что и в том случае, когда вы находитесь на льду озера или в офисном кресле на колесиках. Если вы возьмете часть массы, которую вы носите с собой (обувь, снежок — что угодно), и отбросите ее от себя, то вы немного проедете в противоположном направлении. Конечно, то, что вы выкинули, имеет вес сильно меньше вашего, поэтому вы проедете в обратном направлении на достаточно небольшое расстояние, но все еще вам удалось сдвинуться, используя только самого себя.
Итак, чтобы иметь летающую в космосе ракету, вам нужно возить с собой ракетное топливо. Оно может быть любым, и когда вы его выбросите через заднюю часть ракеты, вы пролетите немного вперед. Прогресс!
А звуковые и сверхзвуковые жидкости обладают особым свойством, которое прямо противоположно их дозвуковым собратьям: вместо замедления при повторном расширении из-за сложной динамики жидкости они. ускоряются. Поэтому, когда такая жидкость выходит из сопла, она получает дополнительный импульс. Кроме того, специальная куполообразная форма сопла на выходе позволяет жидкости продолжать прижиматься к его корпусу, еще больше увеличивая итоговый импульс.
Шаг третий: повинуйтесь тирании
Итак, у вас есть топливо и сопло. Что осталось? Правильно, вам нужно что-то, чтобы привести все это в действие: источник энергии, который вам также нужно упаковать с собой. В случае бросания вещей на скользком льду вы принесли свою энергию в виде завтрака, который вы употребили раньше и хранили для последующего использования.
Но зерновые и молоко — не самый лучший источник энергии для космической энергетики, поэтому химические ракеты оказались настолько успешными. Создавая мощную смесь топлива (например, высокоочищенный керосин) и окислителя (например, кислород), можно высвободить и использовать невероятные объемы энергии в последующих экзотермических реакциях. Разумеется, имеются и другие комбинации, и в некоторых случаях топливо самовоспламеняется при правильных условиях или существует в твердой форме перед использованием по назначению.
Но тот факт, что вы должны нести свой собственный источник топлива и энергии, резко ограничивает то, что может сделать ракета. Это регулируется формулой Циолковского — простой связью между энергией, необходимой для достижения цели, энергией, запасенной в топливе, и долей общей массы ракеты, занятой топливом.
Можете улетать
Что в итоге? У вас есть все необходимые компоненты ракеты: сохранение импульса, ракетное топливо, сопло причудливой формы и источник энергии. И все, даже самые нестандартные ракеты, следуют тем же основным принципам. Соплом могут быть электрические или магнитные поля, а источником энергии — топливо, ядерные реакции или само Солнце. Но, несмотря ни на что, шаги выше — единственный способ получить ракету в космосе.
Запустить своими руками виртуальную ракету прямо в своей квартире, офисе, парке теперь могут все пользователи мобильного приложения Первого канала при помощи технологии дополненной реальности (AR — augmented reality).
AR-ракета в приложении Первого канала
Если у вас пока не установлено приложение Первого канала, скачайте его в App Store или Google Play или сканируйте QR-код здесь.
Читайте также: