Как сделать из h2s so2
При растворении SO2 в воде происходит его частичное соединение с молекулами воды - об разуется слабая сернистая кислота.
SO2 + СаО = CaSO3 сульфит кальция
SO2 + NaOH = NaHSO3 гидросульфит натрия
Диоксид серы окисляется в газовой фазе до SO3:
На свету легко окисляется хлором:
В водных растворах при окислении SO2 образуется серная кислота H2SO4:
Обесцвечивание окрашенных окислителей (КМпO4 и Вr2) - качественная реакция для распознавания SO2 (например, отличие его от СO2, СО, СН4 и многих других газов):
Продуктом восстановления SO2 чаще всего является свободная сера.
H2SO3 - сернистая кислота
В свободном состоянии не выделена. Очень непрочное соединение. Образуется при растворении SO2 в воде. Обладает свойствами слабой кислоты.
Сульфиты и гидросульфиты
2-х основная сернистая кислота образует при взаимодействии со щелочами 2 ряда солей: нормальные (средние) - сульфиты Mex(SO3)y и кислые - гидросульфиты Me(HSO3)x.
Сульфиты щелочных Me и аммония растворимы в воде. Сульфиты остальных Me нерастворимы в воде (или не существуют).
Гидросульфиты Me хорошо растворимы в Н2O, некоторые из них существуют только в растворе, например, Ca(HSO3)2.
Водные растворы сульфитов вследствие гидролиза имеют щелочную среду (окрашивают лакмус в синий цвет).
Химические свойства сульфитов
1. Взаимодействие с сильными кислотами:
Оба типа солей разлагаются сильными кислотами, при этом слабая сернистая кислота вытесняется в виде SO2 и Н2O.
2. Термическое разложение сульфитов:
3. Нормальные сульфиты в водных растворах, содержащих избыток SO2, превращаются в гидросульфиты
Благодаря этой реакции нерастворимые в воде сульфиты превращаются в растворимые гидросульфиты
4. Ионно-обменные реакции с другими солями, приводящие к образованию нерастворимых сульфитов:
I. Сульфиты как восстановители.
Сульфиты, подобно SO2, могут быть и восстановителями, и окислителями, поскольку атомы серы в анионах SO3 находятся в промежуточной С.О. +4
В водных растворах и сульфиты, и гидросульфиты легко окисляются до сульфатов. Примеры реакций:
Даже твердые сульфиты при хранении на воздухе медленно окисляются до сульфатов:
II. Сульфиты как окислители.
Эти реакции не столь многочисленны. При нагревании сухих сульфитов с такими активными восстановителями, как С, Mg, Al, Zn, они переходят в сульфиды:
III. Диспропорционирование сухих сульфитов.
При нагревании до высоких температур сульфиты медленно превращаются в смесь сульфатов и сульфидов:
Сероводород – токсичный бесцветный газ с запахом тухлых яиц.
Сероводород (H 2 S) в лаборатории можно получить нагреванием смеси парафина с серой.
Выделяющийся сероводород можно обнаружить с помощью влажной универсальной индикаторной бумаги: под действием сероводорода она краснеет. При добавлении сульфата меди к сероводородной воде выпадает черный осадок сульфида меди
По черному осадку сульфида свинца можно обнаружить сульфид-ион.
Сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.
FeS (тв.) + 2HCl = FeCl 2 + H 2 S↑
Еще один способ получения сероводорода – прямой синтез из водорода и серы:
Выход H 2 S мал, т.к. обратимая реакция обратима
Наиболее чистый сероводород можно получить при гидролизе сульфида алюминия
Сероводород можно получить в других реакциях:
ХИМИЧЕСКИЕ СВОЙСТВА СЕРОВОДОРОДА
В водном растворе сероводород проявляет слабые кислотные свойства .
H 2 S ↔ H + + HS - (I ступень)
HS - ↔ H + + S 2- (II ступень)
Изменяет окраску индикаторов на красную – кислая среда.
2) Взаимодействие с растворами оснований. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:
K 2 S средняя соль - сульфид калия
H 2 S (избыток) + KOH = KHS + H 2 O
KHS кислая соль - гидросульфид калия
3) С растворами солей тяжёлых металлов (Cu, Pb, Ni, Cd, Zn):
CuS осадок чёрного цвета
Сульфиды тяжёлых металлов окрашены: PbS; CuS; NiS – чёрные. СdS – жёлтый. ZnS – белый.
Сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:
Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
Сероводород – восстановитель
Сероводород H 2 S – очень сильный восстановитель за счет серы в степени окисления -2.
1) При недостатке кислорода и в растворе H 2 S окисляется до свободной серы (раствор мутнеет):
В избытке кислорода:
2) Как сильный восстановитель, сероводород легко окисляется под действием окислителей.
Бром и хлор окисляют сероводород до молекулярной серы:
H 2 S -2 + Br 2 = S 0 + 2HBr
Br 2 - бромная вода - обесцвечивается
Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
Азотная кислота окисляет сероводород до молекулярной серы:
При кипячении сера окисляется до серной кислоты:
Прочие окислители окисляют сероводород, как правило, до молекулярной серы.
Оксид серы (IV) окисляет сероводород:
Соединения железа (III) также окисляют сероводород:
H 2 S + 2FeCl 3 = 2FeCl 2 + S + 2HCl
Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:
Интересно! Серебряные и медные монеты чернеют на воздухе и в воде, если в среде содержится сероводород:
Серная кислота окисляет сероводород либо до молекулярной серы:
Либо до оксида серы (IV):
СУЛЬФИДЫ
Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.
По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.
Чёрные сульфиды (CuS, HgS, PbS, Ag 2 S, NiS, CoS)
Белые и цветные сульфиды (ZnS, MnS, FeS, CdS)
ПОЛУЧЕНИЕ СУЛЬФИДОВ
1) Сульфиды получают при взаимодействии серы с металлами . При этом сера проявляет свойства окислителя.
2) Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей
3) Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями или взаимодействием сероводорода с солями (только черные сульфиды)
ХИМИЧЕСКИЕ СВОЙСТВА СУЛЬФИДОВ
1) Гидролиз. Растворимые сульфиды гидролизуются по аниону, среда водных растворов сульфидов щелочная:
2) С растворами кислот. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.
CaS + 2HCl = CaCl 2 + H 2 S↑
3) С концентрированными кислотами. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.
или горячей концентрированной серной кислоте:
4) Сульфиды проявляют восстановительные свойства и окисляются пероксидом водорода, хлором и другими окислителями.
Сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):
Сульфид меди (II) окисляется хлором:
5) Обжиг сульфидов. При этом образуются оксиды металла и серы (IV).
6) Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на ион S 2−
Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:
7) Необратимый гидролиз
Разложение происходит и при взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.
Сернистая кислота — это двухосновная кислородсодержащая кислота.
Сернистая кислота является неустойчивым веществом, распадающимся на диоксид серы S O 2 и воду. Валентность серы в сернистой кислоте равна IV, а степень окисления: +4. Структурная формула выглядит так:
Формула серной кислоты в химии — H 2 S O 4 . Степень окисления серы: +6. Данные характеристики отличают соединение от сернистой кислоты. Серная кислота может существовать в виде разбавленных и концентрированных растворов. Сернистую кислоту лишь называют кислотой, так как вещество может существовать в только в разбавленном водном растворе, в чистом виде не выделяется. В процессе концентрации определенное количество кислоты, которое превышает максимальную концентрацию, распадается. В результате происходит образование воды и сернистого ангидрида S O 2 . По этой причине водный раствор сернистой кислоты всегда обладает запахом сернистого ангидрида, то есть сгоревшей головки спички. Серная кислота не имеет запаха. Концентрированная серная кислота практически в два раза тяжелее, чем сернистая.
Химические и физические свойства
Сернистый ангидрид S O 2 представляет собой бесцветный газ и обладает резким запахом.
Физические свойства сернистой кислоты:
- не имеет цвета;
- существует только в водном растворе;
- имеет характерный резкий запах;
- хорошо растворяется в воде;
- при контакте с красителями обесцвечивает их;
- убивает микроорганизмы.
Сернистая кислота в водном растворе является слабым электролитом. Диссоциация протекает обратимо по двум ступеням.
H 2 S O 3 ↔ H S O 3 – + H +
H S O 3 – ↔ S O 3 2 – + H +
В процессе самопроизвольного распада сернистой кислоты образуются диоксид серы и вода.
H 2 S O 3 ↔ S O 2 + H 2 O
Сернистая кислота вступает в химическую реакцию с сильными основаниями и их оксидами.
Взаимодействие сернистой кислоты с гидроксидами таких щелочных металлов, как натрий и калий, описывается уравнениями:
H 2 S O 3 + К О Н → K H S О 3 + H 2 O
H 2 S O 3 + 2 К О Н → К 2 S О 3 + 2 H 2 O
Среди всех химических свойств сернистой кислоты наиболее ярко выражены ее восстановительные свойства. Взаимодействуя с окислителями, сера повышают собственную степень окисления.
Обесцвечивание бромной воды с помощью сернистой кислоты:
H 2 S O 3 + B r 2 + H 2 O → H 2 S O 4 + 2 H B r
Процесс окисления сернистой кислоты азотной протекает достаточно легко по уравнению:
H 2 S O 3 + 2 H N O 3 → H 2 S O 4 + 2 N O 2 + H 2 O
Окисление сернистой кислоты с помощью озона:
H 2 S O 3 + O 3 → H 2 S O 4 + O 2
При контакте с сильными восстановителями могут проявляться окислительные свойства сернистой кислоты.
Взаимодействие сернистой кислоты и сероводорода сопровождается ее восстановлением до элементарной серы:
H 2 S O 3 + 2 Н 2 S → 3 S + 3 H 2 O
Качественная реакция на сернистую кислоту
Качественная реакция на сернистую кислоту представляет собой обесцвечивание раствора перманганата калия:
5 H 2 S O 3 + 2 K M n O 4 → 2 H 2 S O 4 + 2 M n S O 4 + K 2 S O 4 + 3 H 2 O
Качественная реакция на соли сернистой кислоты (сульфиты) представляет собой химическую реакцию их растворов с сильными кислотами, которая сопровождается выделением газа S O 2 , обладающего резким запахом:
N a 2 S O 3 + 2 H C l → 2 N a C l + S O 2 ↑ + H 2 O
2 H + + S O 3 2 – → S O 2 ↑ + H 2 O
Способы получения и как применяется
Сернистую кислоту синтезируют с помощью растворения сернистого газа ( S O 2 ) в воде ( H 2 O ) . Процесс можно наблюдать опытным путем. Необходимо взять концентрированную серную кислоту ( H 2 S O 4 ) , медь ( C u ) и пробирку. Алгоритм действий таков:
- аккуратно добавить в пробирку концентрированную серную кислоту;
- поместить в пробирку, содержащую кислоту, кусочек меди;
- смесь требуется нагреть.
Далее можно наблюдать реакцию, протекающую по уравнению:
C u ( м е д ь ) + 2 H 2 S O 4 ( с е р н а я к и с л о т а ) = C u S O 4 ( с у л ь ф а т с е р ы ) + S O 2 ( с е р н и с т ы й г а з ) + H 2 O ( в о д а )
S O 2 ( с е р н и с т ы й г а з ) + H 2 O ( в о д а ) = H 2 S O 3
Таким образом с помощью пропускания сернистого газа через воду получают сернистую кислоту.
В процессе экспериментов с сернистым газом необходимо использовать индивидуальные средства защиты, так как вещество раздражает слизистую оболочку дыхательных путей. Подобное воздействие сопровождается воспалительным процессом и потерей аппетита. Длительное вдыхание сернистого газа приводит к потере сознания.
Сернистая кислота нашла применение в качестве восстановителя. Вещество используют для беления шерсти, шелка и других материалов, которые не способны выдержать отбеливание сильными окислителями в виде хлора. Сернистую кислоту используют в процессе консервирования плодов и овощей, а также для:
- обесцвечивания натуральных тканей, древесной массы, бумаги;
- консервации, антисептической обработки — к примеру, для защиты от ферментации зерна в производстве крахмала, предотвращения процесса брожения в бочках вина;
- переработки древесной щепы в сульфитную беленую целлюлозу, необходимую для изготовления бумаги.
В процессе обработки древесного сырья на бумажном производстве используют раствор гидросульфита кальция ( C a ( H S O 3 ) 2 ) . Вещество является растворителем лигнина, который связывает волокна целлюлозы.
Вам может понравиться Все решебники
Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.
Сероводород H2S.
Сероводород H2S встречается в природе в водах некоторых минеральных источников, в вулканических газах, в попутных газах месторождения нефти. Бесцветный газ с неприятным запахом тухлых яиц, tпл = -86 °С, tкип = -60 °С. Ядовит. В твердом состоянии существует в трех различных модификациях. Мало растворим в воде, водный раствор H2S — это слабая кислота. К1 = 0,87•10-7, К2= 10-14. Сильный восстановитель. Получают в промышленности как побочный продукт при очистке нефти, природного и коксового газа. В лаборатории часто получают в аппарате Киппа при взаимодействии FeS c HCl. Применяют в производстве H2SO4, S; для получения сульфидов, сераорганических соединений; в аналитической химии для осаждения сульфидов; для приготовления лечебных, сероводородных ванн. Раздражает слизистые оболочки и дыхательные органы.
Соединения серы со степенью окисления +1
Оксид серы (I) S2O.
Оксид серы (I) S2O это желтый газ, который может несколько часов сохраняться при комнатной температуре (в чистом и сухом сосуде) лишь под давлением не выше 40 мм. рт. ст. Молекула SO2 полярна. Сильное охлаждение переводит закись серы в оранжево-красное твердое вещество. Молекулярным кислородом при обычной температуре не окисляется, а водой легко разлагается. Более или менее легко реагирует с большинством металлов. Получают при взаимодействии SO2 с серой.
Хлористая сера S2Cl2.
Хлористая сера S2Cl2 это бесцветная жидкость, tпл = -77 °С, tкип = 138 °С. Получают в больших количествах прямым действием сухого хлора на избыток серы. Применяют для получения двухлористой серы.
Соединения серы со степенью окисления +2
Серноватистая (тиосерная) кислота H2S2O3.
Сильная кислота (по силе близка к серной кислоте). При комнатной температуре неустойчива и разлагается на H2O, SO2 и S. Молярная электропроводность при бесконечном разведении при 25 °С равна 874,4 Cм•см 2 /моль.
Двухлористая сера SCl2.
Жидкость красного цвета, tпл = -78 °С, tкип = 60 °С. Молекула SCl2 имеет форму равнобедренного треугольника. Получается при взаимодействии хлористой серы с хлором. В обычных условиях медленно разлагается на хлористую серу и хлор.
Соединения серы со степенью окисления +3
Дитионистая кислота H2S2O4.
Неустойчива и в свободном состоянии не получена.
Соединения серы со степенью окисления +4
Оксид серы (IV) SO2.
Бесцветный газ с удушливым запахом, легко превращаемый в жидкость, tпл = -75 °С, tкип = -10 °С. Ядовит. Хорошо растворим в воде. При растворении образуется полигидрат SO2•nH2O кислотного характера. Получают сжиганием элементной серы или обжигом руды — пирита FeS2. Образуется также в ряде металлургических процессов и при сжигании каменных углей, всегда содержащих некоторое количество серы. Особенно много SO2 выделяют работающие на каменном угле электростанции. Небольшие количества SO2 удобно получать в лаборатории из сульфитов. Применяют для производства серной кислоты, в текстильной промышленности, в качестве обесцвечивающего вещества в сахарном производстве, пищевой промышленности, для дезинфекции помещений и уничтожения паразитов на теле животных.
Сернистая кислота H2SO3.
Двухосновная кислота средней силы. Неустойчива. В свободном состоянии не выделена. Молярная электропроводность при бесконечном разведении при 25 °С равна 843,6 Cм•см 2 /моль.
Хлористый тионил SOCl2.
Бесцветная жидкость с резким запахом, tпл = -100 °С, tкип = 76 °С. Является плохим растворителем типичных солей, но хорошим для многих менее полярных веществ. Взаимодействует с водой. Применяется для изготовления красителей, фармацевтических препаратов. Им удобно пользоваться для получения безводных хлоридов металлов из их кристаллогидратов.
Соединения серы со степенью окисления +6
Оксид серы (VI) SO3.
Известен в трех модификациях: a, b, g. При конденсации паров SO3 образуется бесцветные, прозрачные как лед кристаллы ( tпл = 62 °С), это g-форма, которая при хранении переходит в b-форму, похожую на асбест ( tпл= 32 °С). a-форма ( tпл = 17 °С, tкип = 44,8 °С) образуется при особых условиях. Из этих трех форм наиболее высоким давлением пара обладает g-форма. Полученный серный ангидрид может быть твердым или частично жидким. Жадно соединяясь с водой, дымит на воздухе. В воде он растворяется с образованием серной кислоты. Образует соединения с водой, аммиаком или его органическими производными. Получают окислением сернистого газа.
Серная кислота H2SO4.
Безводная серная кислота — бесцветная маслянистая жидкость, без запаха, tпл = 10 °С, tкип = 296 °С. Концентрированная серная кислота вызывает ожоги кожи. Серная кислота может быть различной чистоты и концентрации. Плотность увеличивается с концентрацией и достигает максимального значения при концентрации 98,3%, при дальнейшем повышении концентрации плотность кислоты снижается. Растворение в воде сопровождается выделением большого количества тепла и уменьшением объема. При давлении 760 мм рт. ст. все водные растворы кипят при температуре выше 100 °С, точка кипения повышается с увеличением концентрации. Мало летуча. Концентрированная серная кислота действует почти на все металлы без выделения водорода. Молярная электропроводность при бесконечном разведении при 25 °С равна 859,6 Cм•см 2 /моль. Для промышленного получения применяются два способа: нитрозный и контактный. Основным исходным продуктом в обоих случаях является сернистый газ. Является важнейшим химическим продуктом. Применяется почти во всех отраслях химической промышленности и в целом ряде других отраслей народного хозяйства.
Хлористый сульфурил SO2Cl2.
Представляет собой бесцветную жидкость с резким запахом, tпл = -54 °С, tкип = 69 °С. Холодная вода действует на него медленно, но горячей он быстро разлагается с образованием серной и соляной кислот.
Читайте также: