Как сделать из c2h2 co2
Ученые из Нидерландов предложили использовать процесс электровосстановления CO2 для производства широкого спектра полезных продуктов буквально из воздуха. Это позволит сократить выбросы углекислого газа в разы. Руководитель исследовательской группы Мин Ма (Ming Ma) поясняет: улавливание и использование углерода принесло бы больше пользы, чем широко распространенное сегодня улавливание и хранение углерода. Последний процесс включает в себя выделение CO2 из промышленных и энергетических источников, транспортировку к месту хранения и долгосрочную изоляцию. Предполагается, что такая стратегия помогает бороться с глобальным потеплением, а также загрязнением окружающей среды.
Однако улавливание и использование углерода имеет гораздо большие перспективы. Оно подразумевает электрохимическое восстановление CO2 до различных веществ (от спиртов до топлива).
По словам ученых, диоксид углерода (CO2) можно превратить в монооксид углерода (CO, он же угарный газ), метан (CH4), этилен (C2H4) и даже жидкие продукты, такие как муравьиная кислота (HCOOH), метанол (CH3OH) и этанол (C2H5OH).
Углеводороды с высокой плотностью энергии можно использовать в качестве топлива, а также в качестве исходного сырья в процессе Фишера-Тропша. Это химическая реакция, которая применяется в промышленности для превращения монооксида углерода (CO) и водорода (H2) в различные жидкие углеводороды, такие как метанол или синтетическое топливо (например, дизельное).
Мин Ма и его коллеги исследовали, что происходит на наноуровне, когда в процессе электровосстановления CO2 участвуют различные металлы. В результате ученые пришли к выводу, что можно производить любой продукт на основе углерода или его комбинаций с другими веществами в любом желаемом соотношении. К примеру, при использовании смеси платины и золота можно в относительно больших количествах получать муравьиную кислоту (HCOOH), которая может найти применение в топливных элементах.
Ученые из Института катализа имени Борескова в Новосибирске также придумали способ переработки атмосферного углекислого газа в синтетическое газовое топливо.
Американские инженеры тоже предложили получать топливо из углекислого газа. Группа инженеров из MIT под руководством Сяо-Ю Ву (Xiao-Yu), Рональда Крейна (Ronald C. Crane) и Ахмеда Гониема (Ahmed Ghoniem) разработала мембранную методику переработки углекислого газа в моноксид углерода, который можно использовать как топливо и сырье для химической промышленности.
Мембрана не пропускает моноксид углерода и другие газы — только кислород. Пропуская через такую мембрану продукты реакции термического разложения углекислого газа, можно получать кислород и газовую смесь с высокой концентрацией CO. Эту смесь можно использовать как топливо саму по себе или в смеси с водородом; возможно также использование в химической промышленности для получения метана, метанола и других видов топлива. В лаборатории ученые уже опробовали некоторые из перечисленных подходов.
Процесс получения CO из CO2 остается энергозатратным, но авторы разработки предлагают устранить этот недостаток, устанавливая мембраны непосредственно на установках, в которых в больших количествах сжигается углеводородное топливо; тогда энергия, необходимая для реакции, будет поступать непосредственно от реактора. Гонием описывает возможность применения мембраны на электростанциях, которые работают на природном газе. Основной продукт его сжигания — углекислый газ, поэтому ученые предлагают делить природный газ на два потока. Газ первого потока сжигать для получения электроэнергии и направлять образовавшийся CO2 в камеру для разложения на CO и O2, а газ второго потока использовать для связывания кислорода. Такой метод может снизить выбросы углекислого газа в атмосферу.
Все вышеописанные технологии требуют доработки, и ученые ищут наиболее эффективные решения, ведь перспектива превращения углекислого газа в полезные продукты выглядит привлекательнее, чем его захоронение.
Международная команда исследователей создала одноступенчатый процесс конверсии углекислого газа в топливо при помощи нетепловой плазмы. Новый метод сократит затраты на производство и выбросы углекислого газа в окружающую среду.
Несмотря на исследования в области зелёной экономики и поиск альтернативных источников энергии, потребность человека в углеводородном топливе не снижается. В процессе сжигания и переработки углеводородного топлива в окружающую среду выделяется большое количество углекислого газа (CO₂), избыток которого оказывает сильное воздействие на глобальный климат.
Для использования избыточного CO₂ ещё в начале XX века исследователи разработали способ переработки газа обратно в топливо. Конверсия достигается путём его гидратации методом Фишера-Тропша, для чего необходимы дорогие катализаторы. Процесс переработки проходит в несколько этапов и требует высокой температуры (200—400 ºC) и давления (10—40 ст.атм). Это очень энергозатратно, поэтому исследователи ищут альтернативные способы конверсии и подбирают разные катализаторы.
Команда учёных из Китая и США придумала использовать нетепловую плазму вместе с катализатором оксидом алюминия в методе Фишера-Тропша для сокращения времени на конверсию газа.
Нетепловая плазма представляет из себя газ комнатной температуры с заряженными частицами. Они активируют молекулы углекислого газа и водорода в закрытом реакторе, не требуя при этом повышенных температур и концентрирующего газ давления. Благодаря этому плазма преобразует углекислый газ (CO₂) в монооксид углерода (СО). Взаимодействие СО и водорода (H₂) образует воду (H₂O), метан (CH₄) и углеводороды С2+.
Данный метод позволил исследователям получить углеводороды при комнатной температуре (24 ºC) и обычном давлении (1 ст.атм). Таким образом, плазма удешевляет и упрощает синтез CO₂.
Исследователи планируют внедрить технологию в широкое производство и замкнуть производственную цепь, перерабатывая весь выделяемый углекислый газ. По словам учёных, замкнутая цепь не только снизит количество выбросов CO₂ в атмосферу, но и решит проблему с дефицитом топлива.
Муравьиная кислота – в медицине — муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.
Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.
Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.
Щавелевая кислота – в металлургической промышленности (удаление окалины).
Стеариновая C17H35COOH и пальмитиновая кислота C15H31COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.
Олеиновая кислота C17H33COOH – флотореагент и собиратель при обогащении руд цветных металлов.
До настоящего времени алканы в основном не получают, а выделяют из природного сырья: природного газа, нефти, каменного угля. Алканы являются основными компонентами природного газа, нефти, каменного угля. В промышленности алканы выделяют из природных источников. Эти источники все еще считаются почти неисчерпаемыми. Но было время, когда необходимо было синтезировать алканы. Например, процесс Фишера-Тропша (1) был разработан в 20-е гг. ХХ в. в Германии в связи с дефицитом бензина. Сейчас этот метод не используется.
nCO+(2n+1)H2CnH2n+2+nH2O (1)
Получение алкенов в промышленности
Из природного и попутного нефтяного газа
Важнейшим источником алканов в природе является природный газ, минеральное углеводородное сырье - нефть и сопутствующие ей нефтяные газы. Природный газ на 95 процентов состоит из метана. Такой же состав имеет болотный газ, образующийся в результате переработки бактериями (гниения) углеводов. Метан называют ещё и болотным; рудничным газом.
Попутные нефтяные газы состоят в основном из этана, пропана, бутана и частично пентана. Их отделяют от нефти на специальных установках по подготовке нефти. При отсутствии газоконденсатных станций попутные нефтяные газы сжигают в факелах, что является крайне неразумной и разорительной практикой в нефтедобыче. Одновременно с газами нефть очищается от воды, грязи и песка, после чего поступает в трубу для транспортировки. Из нефти при ее разгонке (перегонке, дистилляции) отбирая последовательно все более и более высококипящие фракции получают:
Остаток после перегонки нефти называется асфальтом илибитумом.
2. Синтезом из водяного газа: n CO + (2n + 1) H2 - t,kat→ CnH2n+2 + n H2O
CO + 3H2 - t,kat→ CH4 + H2O
3. Синтезом из простых веществ: n C + (n + 1) H2 t,kat,p → CnH2n+2
C + 2 H2 500°C,Ni→ CH4
Получение алканов в лаборатории
1. Гидролиз карбида алюминия (получение метана):
Al4C3 + 12H2O = 4Al(OH)3 + 3CH4↑
2. Реакция Вюрца (взаимодействие натрия с галогенпроизводными алканов):
R-Г + 2Na + Г-R1 → R-R1 + 2NaГ
(R- это радикал; Г- это галоген)
a) CH3-Cl + 2Na + Cl-CH3 → CH3-CH3 + 2NaCl или 2CH3Cl + 2Na → C2H6 + 2NaCl
б) CH3-I + 2Na + I-C2H5 → CH3-C2H5 + 2NaI или CH3I + 2Na + C2H5I → C3H8 + 2NaI
3. Термическое декарбоксилирование солей карбоновых кислот в присутствии щелочей:
R-COONa + NaOH t ˚С→ R-H + Na2CO3
a) CH3-COONa + NaOH t ˚С→ CH4 + Na2CO3
ацетат натрия едкий натр метан карбонат натрия
б) C2H5-COONa + NaOH t ˚С→ C2H6 + Na2CO3
этилат натрия этан
4. Каталитическое гидрирование алкенов и алкинов:
a) CnH2n + H2 t,kat,p→ CnH2n+2 C2H4 + H2 300°C,Ni→ C2H6
алкен
b) CnH2n-2 + 2H2 t,kat→ CnH2n+2 C2H2 + 2H2 t,kat→ C2H6
алкин
5. Электролиз растворов солей карбоновых кислот - реакция Кольбе
Пример. Электролиз водного раствора ацетата натрия
H2O, CH3COONa ↔ Na+ + CH3COO-
КАТОД (-)
АНОД (+)
H2O, Na+
H2O, CH3COO-
Анионы органических кислот активнее воды
Процесс восстановления
2H2O + 2ē → H2↑ + 2OH-
Процесс окисления
CH3COO- - 1e-→ CH3COO∙ (радикал)
CH3COO∙ → CH3∙ + СО2↑
2 СН3 ∙ → С2Н6
Итог: 2H2O + 2CH3COONa эл.ток= H2 + 2CO2 + 2NaOH + C2H6
2H2O + 2CH3COONa эл.ток= H2 + 2NaHCO3 + C2H6
Метан и другие газообразные алканы образуются при разложении остатков растительных и животных организмов без доступа воздуха. Разработан способ проведения этого процесса искусственно – в специальных баках. Рис. 1.
Рис. 1. Биогазовая установка (Источник).
Образующийся газ, состоящий на 50–70% из метана, называют биогазом. Для получения синтез-газа из метана используют два процесса, протекающие при 800–900и в присутствии катализаторов Ni, MgO, Al2O3.
CH4+H2O СO + 3H2↑
1.Декарбоксилирование солей карбоновых кислот.
Соли карбоновых кислот смешивают с твердыми щелочами и сильно нагревают (сплавляют). При этом выделяется углеводород, который содержит на один атом углерода меньше, чем исходная соль.
CH3CH2COONa + NaOH CH3-CH3 + Na2CO3.
2. Гидролиз карбида алюминия.
При взаимодействии карбида алюминия с водой образуется метан.
Al4C3 + 12H2O ¾¾® 3CH4 + 4Al(OH)3¯.
При нагревании галогеналканов с натрием образуются алканы, содержащие в два раза больше атомов углерода, чем исходный галогеналкан. Эту реакцию используют для получения углеводородов с более длинной углеродной цепью.
2CH3Br + 2Na CH3-CH3 + 2NaCl.
Применение алканов
1. Предельные углеводороды находят широкое применение в самых разнообразных сферах жизни и деятельности человека.
2. Использование в качестве топлива – в котельных установках, бензин, дизельное топливо, авиационное топливо, баллоны с пропан-бутановой смесью для бытовых плит
3. Вазелин используется в медицине, парфюмерии, косметике, высшие алканы входят в состав смазочных масел, соединения алканов применяются в качестве хладагентов в домашних холодильниках
4. Смесь изомерных пентанов и гексанов называется петролейным эфиром и применяется в качестве растворителя. Циклогексан также широко применяется в качестве растворителя и для синтеза полимеров.
5. Метан используется для производства шин и краски
6. Значение алканов в современном мире огромно. В нефтехимической промышленности предельные улеводороды являются базой для получения разнообразных органических соединений, важным сырьем в процессах получения полупродуктов для производства пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ. Велико значение в медицине, парфюмерии и косметике.
1. Энергоносители (топливо). Алканы нефти и природного газа используются как энергоносители. Они являются топливом для транспорта, для тепловых электростанций. Рис. 2. Кроме того, легкие алканы используются и как бытовое топливо. Рис. 3.
Рис. 2. Алканы, как топливо для транспорта
Рис. 3. Алканы – бытовое топливо
2. Сырье для нефтехимического синтеза
Из алканов нефти и природного газа получают алкены, ароматические углеводороды, сажу как наполнитель для резины. Рис. 4. Из алканов получают синтетические моющие средства, галогеналканы, ацетилен, метанол и т.д.
Рис. 4. Сажа является наполнителем для резины
Рис. 5. Твердые алканы для получения парафина
3. Жидкие алканы служат растворителями, входят в состав смазочных масел, смесь твердых алканов – парафин используется при производстве свечей. Рис. 5.
Добыча и производство алканов в промышленных масштабах является не только положительным процессом, но и это приводит к некоторым экологическим проблемам.
Метан, например, является 3-м по значимости парниковым газом, т.е. газом, который, накапливаясь в атмосфере Земли, усиливает парниковый эффект. Вклад его в парниковый эффект заметен. Из-за парникового эффекта метана необходимо изучать его вклад в этот процесс для возможного прогнозирования климата.
Читайте также: