Как сделать функцию в java
В ходе урока мы поговорим на тему ООП (объектно-ориентированного программирования). В уроке мы не будем писать код, а лишь рассмотрим основную концепцию применения данной технологии в языке программирования Джава.
Видеоурок
На начальном этапе ООП – это тёмный лес, в котором многое непонятно и слишком усложнено. На самом деле всё вовсе не так. Предлагаем абстрагироваться от специфических (непонятных) определений и познакомиться с ООП простыми словами.
ООП простыми словами
Поскольку на примере все усвоить гораздо проще, то давайте за пример возьмем робота, которого постараемся описать за счёт классов в ООП.
Класс в случае с роботом – это его чертёж. Экземпляром класса (объектом) называет целый робот, который создан точно по чертежу.
Наследование – это добавление полезных опций к чертежу робота. К примеру, берем стандартный чертёж робота и дорисуем к нему лазеры, крылья и броню. Все эти дорисовки мы сделаем в классе наследнике, основной функционал которого взят из родительского класса.
Полиморфизм – это общий функционал для всех роботов и не важно что каждый робот может очень сильно отличаться друг от друга. К примеру, в главном классе мы указываем возможность передвижения для всех последующих роботов. Далее в классе наследнике мы можем дополнительно указать возможность левитации для робота, в другом же классе укажем возможность передвижения по воде и так далее. Получается, что есть общий функционал что записан в главном чертеже, но его можно переписать для каждого последующего робота (для каждого наследника).
А инкапсуляция является для нас бронёй, защищающей робота. Под пластырем брони находятся уязвимые элементы, вроде проводов и микросхем. После прикрытия брешей с помощью брони ( protected или private ), робот полностью защищён от внешних вмешательств. По сути, мы делаем доступ ко всем полям лишь за счёт методов, тем самым прямой доступ к полю будет закрыт.
У всех классов методы могут отличаться, как и поля с конструкторами. Каждый класс позволяет создавать любое количество разных объектов, все из них имеют собственные характеристики.
Задание к уроку
Назовите 4 основных концепции ООП, а также вкратце расскажите что они делают и за какие функции отвечают.
Java — важный язык разработки во многих больших корпорациях. Мы уже рассказывали про то, как и где применяется Java, теперь настало время для практики.
Так как авторы языка Java при создании вдохновлялись языками C и C++, то в Java тоже появилось много похожих конструкций и команд. Если вы знаете C или C++, то освоить Java вам будет гораздо проще.
👉 В Java после каждой команды ставится точка с запятой.
Комментарии
Комментарии в Java точно такие же, как в C-подобных языках — есть однострочные, которые работают только для одной строки, и многострочные.
// Это однострочный комментарий
// Для каждой строки нужно добавлять его отдельно
/* А это — многострочный
его можно сделать любой длины,
если в начале и в конце поставить нужные символы */
Переменные и типы данных
Как и в C, в Java есть несколько типов данных с разным объёмом выделяемой памяти. Предполагается, что программист сам решит, какой тип использовать лучше всего в каждой ситуации и сам будет следить за тем, чтобы в переменную поместилось всё что нужно.
Присваивание и сравнение
Всё как и везде:
// это присваивание
x = 10;
// а это — сравнение x и 10
// результат сравнения отправляется в переменную b
boolean bol;
b = (x == 10);
Ещё есть метод сравнения .equal — он работает более гибко и предсказуемо, чем ==, потому что двойное равно может сравнивать только числа и строки.
Структура программы
Разработчикам Java понравилось, что в C вся программа состоит из функций, среди которых есть одна обязательная — main, поэтому сделали точно так же. В классах эта функция называется методом.
Но есть одно важное отличие: каждая java-программа — это как бы один большой класс со своими разделами, которые должны быть у каждого класса. Благодаря этому большие программы легко собираются из маленьких java-кирпичиков и работают друг с другом как с классами, используя все их возможности.
Ввод и вывод
Для ввода и вывода используют системный класс System и два его объекта — in и out. Но на практике чаще всего вместо in используют объект Scanner, чтобы можно было более гибко управлять вводом данных.
Условные операторы if и switch
Работают так же, как в C и в любых современных языках высокого уровня. Главное здесь — следить за фигурными скобками и не перепутать, что к чему относится. Проще всего это регулировать отступами:
У оператора множественного выбора есть особенность: ему не нужны фигурные скобки для действий в каждом случае. Компьютер по синтаксису понимает, что к чему относится, и выбирает нужный вариант.
Циклы
В Java есть три основных вида циклов:
- for — с известным числом повторений и счётчиком;
- do — с проверкой условия до цикла;
- while — условие проверяется после первого выполнения цикла.
Ещё есть два полезных оператора:
- break — прерывает цикл в любой момент;
- continue — сразу переходит к следующему витку цикла без выполнения остальных команд.
Функции (они же методы)
Так как каждая программа — это описание какого-то класса, то функции в Java — это и есть методы этого класса. Функций (или методов) может быть сколько угодно, главное — соблюдать правила описания классов. Покажем на примере:
Классы
В Java всё построено на классах, от самой программы до реализаций различных функций. Конечно, можно не использовать классы и работать в чисто процедурном стиле, но в Java так не принято. Это ООП-язык с родной поддержкой классов на всех уровнях.
Сами классы объявляются и используются так же, как и в любом другом ООП-языке:
Объекты
Объекты в Java работают по тому же принципу, что и все объекты в ООП: можно создавать сколько угодно объектов на основе классов и делать их любой сложности.
Обычно используют классы, прописанные в том же файле, что и программа. Если нужно использовать класс из другой программы, её подключают отдельно. Вот самый простой способ сделать объект на основе предыдущего класса с заказом:
На данном этапе вы освоите технику создания собственных методов с либо без возвращаемых значений, вызова методов с указанием либо без указания параметров, и выделения методов при разработке программы.
Создание метода
Ниже рассмотрен пример, иллюстрирующий синтаксис метода, как в Java создать метод.
Синтаксис
- public static — модификатор;
- int — возвращаемый тип;
- methodName — имя метода;
- a, b — формальные параметры;
- int a, int b — перечень параметров.
Определение метода представлено заголовком и телом метода. То же самое мы можем наблюдать в следующем синтаксисе создания метода.
Синтаксис
Приведенный выше синтаксис включает:
- modifier – определяет тип доступа для метода и возможность его использования.
- returnType – метод может возвратить значение.
- nameOfMethod – указывает имя метода. Сигнатура метода включает имя метода и перечень параметров.
- Parameter List – перечень параметров представлен типом, порядком и количеством параметров метода. Данная опция задается произвольно, в методе может присутствовать нулевой параметр.
- method body – тело метода определяет метод работы с командами.
Пример
Далее представлен исходный код рассмотренного выше метода, именуемого max(). Данный метод использует два параметра num1 и num2 и возвращает больший из двух.
Вызов метода
Перед использованием метода его необходимо вызвать. Существует два способа для вызова метода в Java, т.е. метод производит возврат значения либо не производит (отсутствует возвращающее значение).
Алгоритм вызова метода достаточно прост. Когда программа производит в Java вызов метода, программное управление передается вызванному методу. Данный вызванный метод затем возвращает управление вызывающему клиенту в двух случаях, если:
- выполняется оператор возврата;
- достигнута закрывающая фигурная скобка окончания метода.
Метод возврата типа void производит вызов команды. Рассмотрим пример:
Метод возврата значения может быть проиллюстрирован следующим примером:
Пример ниже демонстрирует способ определения и вызова метода в Java.
Пример
Ключевое слово void
Ключевое слово void в Java позволяет нам создать методы, не производящие возврат значения. В примере, расположенном далее, нами был рассмотрен метод типа void – methodRankPoints. Методы типа void в Java не производят возврат каких-либо значений. Вызов метода типа void выполняется командой, т.е. methodRankPoints(255.7);. Это java-выражение, которое оканчивается точкой с запятой, как показано в примере ниже:
Пример
В итоге будет получен следующий результат:
Передача параметров по значению в Java
При выполнении вызывающего процесса производится в Java передача аргументов. Процедура должна осуществляться согласно порядку, предусмотренному соответствующими параметрами в спецификации метода. Передача параметров может производиться по значению либо по ссылке.
В Java передача параметров по значению обозначает вызов метода с параметром. За счет этого производится передача значения аргумента параметру.
Пример
Следующая программа демонстрирует пример передачи параметра по значению. Значения аргументов остаются неизменными даже после вызова метода.
Перегрузка методов
Перегрузка методов в Java — случай, когда в классе присутствуют два и более метода с одинаковым именем, но различными параметрами. Данный процесс отличен от переопределения методов. При переопределении методов, метод характеризуется аналогичным именем, типом, числом параметров и т.д.
Рассмотрим пример, который был представлен выше при определении минимальных чисел целочисленного типа. Так допустим, мы хотим определить минимальное число двойного типа. В данном случае будет представлена концепция перегрузки для создания двух и более методов с одинаковым именем, но различными параметрами.
Рассмотренный пример поясняет вышесказанное.
Пример
Методы перегрузки делают программу читаемой. Таким образом, представлены два метода с одинаковым именем, но различными параметрами. В результате чего мы получили минимальные int число и число double типа.
Использование аргументов командной строки
В ходе работы программы вам может понадобиться произвести передачу определенной информации. Это может быть сделано в Java за счет передачи аргументов командной строки в main().
В Java аргумент командной строки представляет информацию, которая напрямую следует за именем программы в командной строке при ее выполнении. Получение доступа к аргументам командной строки в java-программе не представляет сложности. Они хранятся в виде строки в массиве строк, переданном в main().
Пример
Программа ниже отображает все вызванные аргументы командной строки.
Попробуйте выполнить данную программу, как показано далее:
В итоге будет получен следующий результат:
Конструктор в Java
В Java конструктор инициализирует объект при его создании. Его имя аналогично имени класса, а синтаксис сходен с синтаксисом метода. Однако, в отличие от последнего, в конструкторе отсутствует возвращаемое значение.
Как правило, конструктор в Java может использоваться для присвоения исходного значения переменных экземпляра, определяемых классом, либо для выполнения каких-либо иных процедур запуска, необходимых для создания полностью сформированного объекта.
Конструкторы присутствуют во всех классах, независимо от их указания, в виду того, что Java автоматически предоставляет конструктор по умолчанию, который инициализирует все переменные членов класса до нуля. Вместе с этим, после того как вы определите собственный конструктор, конструктор по умолчанию больше не будет задействован.
Пример
В примере ниже рассмотрено использование конструктора класса без параметров.
Для инициализации объектов вам необходимо выполнить вызов конструктора согласно следующему примеру.
Параметризованный конструктор
Чаще всего вам может понадобиться конструктор, который принимает один и более параметров. Добавление параметров к конструктору аналогично их добавлению в метод, следует только внести их в круглые скобки после имени конструктора.
Пример
Далее рассмотрен простой пример использования конструктора с параметром.
С целью инициализации объектов вам понадобится вызвать конструктор согласно следующему примеру.
Получим следующий результат:
Ключевое слово this
Ключевое слово this — используется для ссылки на текущий класс с учетом метода или конструктора экземпляра. Используя this в Java, Вы можете ссылаться на экземпляры класса, такие как конструкторы, переменные и методы.
Примечание: ключевое слово this используется только в составе методов либо конструкторов экземпляра.
Как правило, ключевое слово this в Java используется для:
- дифференцирования между переменными экземпляра и локальными переменными в случае, если у них одинаковые имена, в составе конструктора или метода.
- вызова конструктора одного типа (параметризованного конструктора либо конструктора по умолчанию) из другого в составе класса. Данный процесс также носит название явного вызова конструктора.
Пример
Далее представлен пример, в котором ключевое слово this используется для доступа к экземплярам класса. Необходимо копировать и вставить данную программу в файл с названием This_Example.java.
В итоге будет получен следующий результат:
Аргументы переменной (var-args)
JDK 1.5 и выше позволяет передавать методу переменное количество аргументов одного типа. Параметр в методе объявляется следующим образом:
При объявлении метода Вы указываете тип, за которым следует многоточие (. ). В методе может быть указан только один параметр переменной длины, и этот параметр должен быть последним параметром. Любые регулярные параметры должны предшествовать ему.
Пример
В итоге будет получен следующий результат:
Метод finalize()
Метод finalize() — метод, который будет вызываться непосредственно перед окончательным уничтожением объекта сборщиком мусора. (финализатором). В Java finalize() может быть использован для обеспечения чистого завершения объекта.
К примеру, мы можете использовать finalize() чтобы удостовериться в том, что открытый файл, принадлежащий данному объекту, был закрыт.
Для добавления финализатора в класс, вам просто следует определить метод finalize() в Java. Среда выполнения Java производит вызов данного метода непосредственно перед обработкой объекта данного класса.
В составе метода finalize(), вы указываете те действия, которые должны быть выполнены перед уничтожением объекта.
В общем виде метод finalize() выглядит следующим образом:
Здесь ключевое слово protected представляет спецификатор, предотвращающий доступ к finalize() посредством кода, определяемого вне его класса.
Функциональное программирование (ФП) представляет собой процесс создания ПО путем компоновки чистых функций. В современном мире работодатели ищут программистов, способных применять к решению задач различные парадигмы программирования. При этом наблюдается рост популярности именно функциональной, так как она очень эффективна и позволяет легко масштабировать проекты.
Как же можно половчее переключиться от ООП к ФП?
Сегодня мы изучим ключевые принципы функционального программирования, рассмотрим их реализацию в Python, JavaScript и Java, а также прикинем, в каком направлении лучше всего продолжать двигаться.
По ходу статьи мы ответим на следующие вопросы:
- Что такое функциональное программирование?
- Как оно реализовано в различных языках?
- Каковы его основные принципы?
- Как оно используется в Python, JavaScript и Java?
- Что стоит изучать далее?
Что такое функциональное программирование?
Функциональное программирование — это парадигма декларативного программирования, в которой программы создаются путем последовательного применения функций, а не инструкций.
Каждая из этих функций принимает входное значение и возвращает согласующееся с ним выходное значение, не изменяясь и не подвергаясь воздействию со стороны состояния программы.
Для таких функций предусмотрено выполнение только одной операции, если же требуется реализовать сложный процесс, то используется уже композиция функций, связанных последовательно. В процессе ФП мы создаем код, состоящий из множества модулей, поскольку функции в нем могут повторно использоваться в разных частях программы путем вызова, передачи в качестве параметров или возвращения.
Чистые функции не производят побочных эффектов и не зависят от глобальных переменных или состояний.
Визуальное представление функций в ФП
Функциональное программирование используется, когда решения легко выражаются с помощью функций и не имеют ощутимой связи с физическим миром. В то время как объектно-ориентированные программы моделируют код по образцу реальных объектов, ФП задействует математические функции, в которых промежуточные или конечные значения не сопоставляются с объектами физического мира.
К наиболее распространенным областям, применяющим ФП, относятся проектирование ИИ, алгоритмы классификации в МО, финансовые программы, а также продвинутые модели математических функций.
Проще говоря: функциональные программы выполняют много чистых однозадачных функций, совмещенных в последовательность для решения сложных математических или не связанных с физическим миром задач.
Преимущества функционального программирования
- Легкая отладка: чистые функции и неизменяемые данные упрощают обнаружение мест определения значений переменных. В чистых функциях меньше факторов, влияющих на них, что позволяет быстрее находить проблемные участки кода.
- Отложенное вычисление: функциональные программы производят вычисления только при необходимости. Это позволяет им повторно использовать ранее полученные результаты и экономить время на выполнение.
- Модульность: чистые функции не полагаются на внешние переменные или состояния, в связи с чем их можно легко переиспользовать в разных местах программы. Кроме того, функции будут выполнять только одну операцию или вычисление, что не позволит вам при их использовании случайно импортировать лишний код.
- Лучшая читаемость: функциональные программы легко читать, потому что поведение каждой функции неизменяемо и изолировано от состояния программы. В результате вы зачастую можете легко понять, что будет делать функция, просто по ее имени.
- Параллельное программирование: программы легче создавать при помощи функционального подхода, потому что неизменяемые переменные снижают число изменений внутри этих программ. Каждой функции приходится работать только с вводом пользователя, и она может быть уверена, что состояние программы в основном останется прежним.
Языки функционального программирования
Функциональная парадигма поддерживается не во всех языках. Некоторые из них, например Haskell, спроектированы именно для этой задачи, в то время как другие, например JavaScript, реализуют возможности и ООП, и ФП. Есть же и такие языки, где функциональное программирование невозможно в принципе.
Функциональные языки:
-
: это наиболее популярный язык среди функциональных программистов. В нем реализована защита памяти, отличный сбор мусора, а также повышенная скорость, обусловленная ранней компиляцией машинного кода. Его богатая статическая система типов дает вам доступ к уникальным алгебраическим и полиморфным типам, которые делают процесс программирования более эффективным, а код более читаемым. : этот язык, как и его потомок, Elixir, заняли нишу лучших функциональных языков для параллельных систем. Несмотря на то, что в популярности он уступает Haskell, его нередко используют для бэкенд-программирования. В последнее время Erlang начал завоевывать внимание в сфере масштабируемых мессенджеров, таких как WhatsApp и Discord. : это ориентированный на функциональную парадигму диалект Lisp, который работает на виртуальной машине Java (JVM). Будучи преимущественно функциональным языком, он поддерживает как изменяемые, так и неизменяемые структуры данных, но при этом все же менее строг в функциональном плане, чем другие. Если вам нравится Lisp, то вы также полюбите и Clojure. : этот язык аналогичен Haskell (они находятся в одной языковой группе), но имеет меньше расширенных возможностей. Кроме того, в нем реализована слабая поддержка объектно-ориентированных конструкций.
Языки с функциональными возможностями
-
: этот язык поддерживает как ООП, так и ФП. Его наиболее интересная особенность в наличии строгой системы статической типизации, как в Haskell, которая помогает создавать строгие функциональные программы. При проектировании Scala среди прочих стояла задача решить многие критические проблемы Java, поэтому данный язык очень подходит для Java-разработчиков, желающих попробовать функциональное программирование.
- JavaScript: несмотря на то, что приоритет в этом языке не на стороне функциональной парадигмы, JavaScript уделяет ей немало внимания в связи со своей асинхронной природой. В нем также поддерживаются такие важные функциональные возможности, как лямбда выражения и деструктуризация. Вместе эти атрибуты выделяют JS как ведущий язык для ФП.
- Python, PHP, C++: эти мультипарадигмальные языки тоже поддерживают функциональное программирование, но уже в меньшей степени, чем Scala и JavaScript.
- Java: этот язык относится к языкам общего назначения, но приоритет в нем отдается ООП, основанному на классах. Несмотря на то, что добавление лямбда выражений в некотором смысле помогает реализовывать более функциональный стиль, в конечном итоге Java остается языком ООП. Он позволяет заниматься функциональным программированием, но при этом в нем недостает ключевых элементов, которые бы оправдывали его освоение именно с этой целью.
Принципы функционального программирования
Переменные и функции
Ключевыми составляющими функциональной программы являются уже не объекты и методы, а переменные и функции. При этом следует избегать глобальных переменных, потому что изменяемые глобальные переменные усложняют понимание программы и ведут к появлению у функций побочных эффектов.
Чистые функции
Для чистых функций характерны два свойства:
- они не создают побочных эффектов;
- они всегда производят одинаковый вывод при получении одинакового ввода, что еще можно называть как ссылочную прозрачность.
Побочные эффекты же возникают, если функция изменяет состояние программы, переписывает вводную переменную или в общем вносит какие-либо изменения при генерации вывода. Отсутствие же побочных эффектов снижает риски появления ошибок по вине чистых функций.
Ссылочная прозрачность означает, что любой вывод функции должен допускать замену на ее значение, не изменяя при этом результата программы. Этот принцип гарантирует, что вы создаете такие функции, которые выполняют только одну операцию и достигают согласованного вывода.
Ссылочная прозрачность возможна только, если функция не влияет на состояние программы или в общем не старается выполнить более одной операции.
Неизменяемость и состояния
Неизменяемые данные или состояния не могут изменяться после их определения, что позволяет сохранять постоянство стабильной среды для вывода функций. Лучше всего программировать каждую функцию так, чтобы она выводила один и тот же результат независимо от состояния программы. Если же она зависит от состояния, то это состояние должно быть неизменяемым, чтобы вывод такой функции оставался постоянным.
Подходы функционального программирования обычно избегают применения функций с общим состоянием (когда несколько функций опираются на одно состояние) и функций с изменяющимся состоянием (которые зависят от изменяемых функций), потому что они уменьшают модульность программы. Если же вы не можете обойтись без функций с общим состоянием, сделайте это состояние неизменяемым.
Рекурсия
Одно из серьезных отличий объектно-ориентированного программирования от функционального в том, что программы последнего избегают таких конструкций, как инструкции if else или циклы, которые в разных случаях выполнения могут выдавать разные выводы.
Вместо циклов функциональные программы используют для всех задач по перебору рекурсию.
Функции первого класса
Функции в ФП рассматриваются как типы данных и могут использоваться как любое другое значение. Например, мы заполняем функциями массивы, передаем их в качестве параметров или сохраняем их в переменных.
Функции высшего порядка
Эти функции могут принимать другие функции в качестве параметров или возвращать функции в качестве вывода. Они делают возможности вызова функций более гибкими и позволяют легче абстрагироваться от действий.
Композиция функций
Для выполнения сложных операций функции можно выполнять последовательно. В этом случае результат каждой функции передается следующей функции в виде аргумента. Это позволяет с помощью всего одного вызова функции активировать целую серию их последовательных вызовов.
Функциональное программирование в Python
В Python реализована частичная поддержка ФП, и некоторые используемые в нем решения математических программ легче реализуются с помощью именно функционального подхода.
Самая сложная часть перехода к использованию такого подхода в сокращении числа используемых классов. В Python классы имеют изменяемые атрибуты, что усложняет создание чистых неизменяемых функций.
Попробуйте оформлять весь код на уровне модулей и переключайтесь на классы только по мере необходимости.
Давайте посмотрим, как добиться чистых неизменяемых функций и функций первого класса в Python, после чего познакомимся с синтаксисом для их композиции.
Чистые и неизменяемые функции
Многие из встроенных в Python структур данных являются неизменяемыми по умолчанию:
- integer;
- float;
- Boolean;
- string;
- Unicode;
- tuple.
Кортежи особенно полезны при использовании в качестве неизменяемой формы массива.
Этот код вызывает ошибку, потому что старается переопределить неизменяемый объект кортежа. Эти неизменяемые структуры данных рекомендуется использовать в функциональных программах Python для получения чистых функций.
Нижеприведенную функцию можно считать чистой, так как у нее нет побочных эффектов, и она всегда возвращает одинаковый вывод:
Функции первого класса
Отметим, что в Python функции рассматриваются как объекты, и ниже мы приводим краткое руководство по их возможному использованию:
Функции в качестве объектов
Передача функции в качестве параметра
Возвращение функции из другой функции
Композиция функций
Для компоновки функций в Python мы используем вызов lambda function . Это позволяет нам единовременно вызывать любое число аргументов.
На строке 4 мы определяем функцию compose2 , получающую две функции в качестве аргументов f и g .
На строке 5 мы возвращаем новую функцию, представляющую композицию из f и g .
В завершении на строке 6 мы возвращаем результаты этой композиции функций.
Функциональное программирование в JavaScript
В связи с поддержкой функций первого класса JavaScript уже давно предлагает функциональные возможности. ФП на этом языке с недавних пор начало набирать популярность, так как повышает производительность при использовании в таких фреймворках, как Angular и React.
Давайте взглянем на то, как можно реализовывать разные функциональные принципы с помощью JS. Сосредоточимся мы на создании ключевых компонентов, а именно чистых функций, функций первого класса и композиций функций.
Чистые и неизменяемые функции
Чтобы начать создание чистых функций в JS, нам понадобится использовать функциональные альтернативы стандартному поведению, такие как const , concat и filter .
Стандартное ключевое слово let определяет изменяемую переменную. Если вместо него для объявления использовать const , это гарантирует нам неизменность переменной, так как переназначить ее уже не получится.
Функциональные альтернативы нам также нужно использовать для управления массивами. Стандартным способом добавления элемента в массив является метод push() . К сожалению, этот метод изменяет начальный массив, в связи с чем не считается чистым.
Но у нас есть его функциональный эквивалент — concat() . Вот он уже возвращает новый массив, который содержит все начальные элементы вместе с добавленным. В этом случае сам начальный массив остается неизменным.
Для удаления элемента из массива мы обычно используем методы pop() и slice() . Тем не менее они не относятся к функциональным, так как изменяют именно первичный массив. Вместо них мы берем метод filter() , который создает новый массив со всеми элементами, прошедшими проверку условия.
Функции первого класса
JavaScript поддерживает функции первого класса по умолчанию. Вот краткое руководство по возможным действиям с функциями в этом языке:
Присвоение функции к переменной
Добавление функции в массив
Передача функции в качестве аргумента
Возвращение функции из другой функции
Функциональная композиция
В JavaScript мы можем компоновать функции при помощи цепочек вызовов:
В качестве альтернативы можно передать выполнение функции в следующую функцию:
Если же требуется связать больше функций, можно вместо этого использовать библиотеку lodash , которая позволит упростить их композицию. Если точнее, то мы передаем в качестве аргумента ее метод compose , сопровождаемый списком функций.
Первая функция в этом списке использует в качестве ввода начальный аргумент, а последующие функции наследуют свои вводные аргументы из вывода предшествующих.
Функциональное программирование в Java
Java очень ограниченно поддерживает ФП по сравнению с Python или JS. Тем не менее в нем есть возможность имитировать функциональное поведение при помощи лямбда функций, потоков и анонимных классов.
В конце концов, компилятор Java создавался без учета функционального программирования, в связи с чем не может использовать многие из преимуществ этой парадигмы.
Чистые и неизменяемые функции
В Java есть несколько неизменяемых структур данных:
Вы также можете создавать собственные неизменяемые классы при помощи ключевого слова final .
Ключевое слово final в классе предотвращает создание дочернего класса. Использование final для name и regNo делает невозможным изменение значений после построения объекта.
В этом классе также присутствуют параметризованный конструктор и геттеры для всех переменных, но при этом отсутствуют сеттеры, что помогает добиться для данного класса неизменяемости.
Функции первого класса
В Java для получения функций первого класса можно использовать лямбда функции. Лямбда принимает список выражений, например методов, но не требует имени или предварительного определения.
Лямбда выражения можно использовать вместо функций, так как они рассматриваются как стандартные объекты класса, которые можно передавать или возвращать.
Композиция функций
Java содержит интерфейс, java.util.function.Function , предоставляющий методы для композиции функций. Метод compose сначала выполняет переданную ему функцию ( multiplyByTen ), а затем передает возвращаемое значение внешней функции ( square ).
И наоборот — метод andThen выполняет сначала внешнюю функцию, а затем функцию из своих параметров.
На строках 1 и 2 мы сначала создаем две функции, square и multiplyByTen .
Затем на строках 5 и 8 мы делаем из них две композиции, multiplyByTenAndSquare и squareAndMultiplyByTen , каждая из которых принимает два аргумента (удовлетворяя условие square ).
Каждая из этих композиций выполняет обе изначальные функции, но в разном порядке. Теперь вы можете вызвать композиции для выполнения обеих исходных функций с одинаковым вводом.
Что изучать дальше
Сегодня мы пробежались по наиболее общим принципам функционального программирования и узнали, как они проявляются в Python, JavaScript и Java.
Одним из ведущих функциональных языков, переживающим этап возрождения, является Scala. Многие технологические гиганты, такие как Twitter и Facebook, начали использовать этот язык и уже ищут программистов с соответствующими навыками, поэтому рекомендуем выбрать в качестве следующего этапа на пути освоения ФП именно Scala.
Читайте также: