Как считать строку с пробелами c из файла
Р абота с текстовым файлом похожа работу с консолью: с помощью функций форматированного ввода мы сохраняем данные в файл, с помощью функций форматированного вывода считываем данные из файла. Есть множество нюансов, которые мы позже рассмотрим. Основные операции, которые необходимо проделать, это
- 1. Открыть файл, для того, чтобы к нему можно было обращаться. Соответственно, открывать можно для чтения, записи, чтения и записи, переписывания или записи в конец файла и т.п. Когда вы открываете файл, может также произойти куча ошибок – файла может не существовать, это может быть файл не того типа, у вас может не быть прав на работу с файлом и т.д. Всё это необходимо учитывать.
- 2. Непосредственно работа с файлом - запись и чтение. Здесь также нужно помнить, что мы работаем не с памятью с произвольным доступом, а с буферизированным потоком, что добавляет свою специфику.
- 3. Закрыть файл. Так как файл является внешним по отношению к программе ресурсом, то если его не закрыть, то он продолжит висеть в памяти, возможно, даже после закрытия программы (например, нельзя будет удалить открытый файл или внести изменения и т.п.). Кроме того, иногда необходимо не закрывать, а "переоткрывать" файл для того, чтобы, например, изменить режим доступа.
Кроме того, существует ряд задач, когда нам не нужно обращаться к содержимому файла: переименование, перемещение, копирование и т.д. К сожалению, в стандарте си нет описания функций для этих нужд. Они, безусловно, имеются для каждой из реализаций компилятора. Считывание содержимого каталога (папки, директории) – это тоже обращение к файлу, потому что папка сама по себе является файлом с метаинформацией.
Иногда необходимо выполнять некоторые вспомогательные операции: переместиться в нужное место файла, запомнить текущее положение, определить длину файла и т.д.
Для работы с файлом необходим объект FILE. Этот объект хранит идентификатор файлового потока и информацию, которая нужна, чтобы им управлять, включая указатель на его буфер, индикатор позиции в файле и индикаторы состояния.
Объект FILE сам по себе является структурой, но к его полям не должно быть доступа. Переносимая программа должна работать с файлом как с абстрактным объектом, позволяющим получить доступ до файлового потока.
Создание и выделение памяти под объект типа FILE осуществляется с помощью функции fopen или tmpfile (есть и другие, но мы остановимся только на этих).
Функция fopen открывает файл. Она получает два аргумента – строку с адресом файла и строку с режимом доступа к файлу. Имя файла может быть как абсолютным, так и относительным. fopen возвращает указатель на объект FILE, с помощью которого далее можно осуществлять доступ к файлу.
Например, откроем файл и запишем в него Hello World
Функция fopen сама выделяет память под объект, очистка проводится функцией fclose. Закрывать файл обязательно, самостоятельно он не закроется.
Функция fopen может открывать файл в текстовом или бинарном режиме. По умолчанию используется текстовый. Режим доступа может быть следующим
Тип | Описание |
---|---|
r | Чтение. Файл должен существовать. |
w | Запись нового файла. Если файл с таким именем уже существует, то его содержимое будет потеряно. |
a | Запись в конец файла. Операции позиционирования (fseek, fsetpos, frewind) игнорируются. Файл создаётся, если не существовал. |
r+ | Чтение и обновление. Можно как читать, так и писать. Файл должен существовать. |
w+ | Запись и обновление. Создаётся новый файл. Если файл с таким именем уже существует, то его содержимое будет потеряно. Можно как писать, так и читать. |
a+ | Запись в конец и обновление. Операции позиционирования работают только для чтения, для записи игнорируются. Если файл не существовал, то будет создан новый. |
Если необходимо открыть файл в бинарном режиме, то в конец строки добавляется буква b, например “rb”, “wb”, “ab”, или, для смешанного режима “ab+”, “wb+”, “ab+”. Вместо b можно добавлять букву t, тогда файл будет открываться в текстовом режиме. Это зависит от реализации. В новом стандарте си (2011) буква x означает, что функция fopen должна завершиться с ошибкой, если файл уже существует. Дополним нашу старую программу: заново откроем файл и считаем, что мы туда записали.
Вместо функции fgets можно было использовать fscanf, но нужно помнить, что она может считать строку только до первого пробела.
fscanf(file, "%127s", buffer);
Также, вместо того, чтобы открывать и закрывать файл можно воспользоваться функцией freopen, которая «переоткрывает» файл с новыми правами доступа.
Функции fprintf и fscanf отличаются от printf и scanf только тем, что принимают в качестве первого аргумента указатель на FILE, в который они будут выводить или из которого они будут читать данные. Здесь стоит сразу же добавить, что функции printf и scanf могут быть без проблем заменены функциями fprintf и fscanf. В ОС (мы рассматриваем самые распространённые и адекватные операционные системы) существует три стандартных потока: стандартный поток вывода stdout, стандартный поток ввода stdin и стандартный поток вывода ошибок stderr. Они автоматически открываются во время запуска приложения и связаны с консолью. Пример
Ошибка открытия файла
Если вызов функции fopen прошёл неудачно, то она возвратит NULL. Ошибки во время работы с файлами встречаются достаточно часто, поэтому каждый раз, когда мы окрываем файл, необходимо проверять результат работы
Проблему вызывает случай, когда открывается сразу несколько файлов: если один из них нельзя открыть, то остальные также должны быть закрыты
В простых случаях можно действовать влоб, как в предыдущем куске кода. В более сложных случаях используются методы, подменяющиее RAII из С++: обёртки, или особенности компилятора (cleanup в GCC) и т.п.
Буферизация данных
- 1) Если он заполнен
- 2) Если поток закрывается
- 3) Если мы явно указываем, что необходимо очистить буфер (здесь тоже есть исключения:)).
- 4) Также очищается, если программа завершилась удачно. Вместе с этим закрываются и все файлы. В случае ошибки выполнения этого может не произойти.
Форсировать выгрузку буфера можно с помощью вызова функции fflush(File *). Рассмотрим два примера – с очисткой и без.
Раскомментируйте вызов fflush. Во время выполнения откройте текстовый файл и посмотрите на поведение.
Буфер файла можно назначить самостоятельно, задав свой размер. Делается это при помощи функции
которая принимает уже открытый FILE и указатель на новый буфер. Размер нового буфера должен быть не меньше чем BUFSIZ (к примеру, на текущей рабочей станции BUFSIZ равен 512 байт). Если передать в качестве буфера NULL, то поток станет небуферизированным. Можно также воспользоваться функцией
- _IOFBF - полная буферизация. Данные записываются в файл, когда он заполняется. На считывание, буфер считается заполненным, когда запрашивается операция ввода и буфер пуст.
- _IOLBF - линейная буферизация. Данные записываются в файл когда он заполняется, либо когда встречается символ новой строки. На считывание, буфер заполняется до символа новой строки, когда запрашивается операция ввода и буфер пуст.
- _IONBF – без буферизации. В этом случае параметры size и buffer игнорируются.
Пример: зададим свой буфер и посмотрим, как осуществляется чтение из файла. Пусть файл короткий (что-нибудь, типа Hello, World!), и считываем мы его посимвольно
Видно, что данные уже находятся в буфере. Считывание посимвольно производится уже из буфера.
Функция int feof (FILE * stream); возвращает истину, если конец файла достигнут. Функцию удобно использовать, когда необходимо пройти весь файл от начала до конца. Пусть есть файл с текстовым содержимым text.txt. Считаем посимвольно файл и выведем на экран.
Всё бы ничего, только функция feof работает неправильно. Это связано с тем, что понятие "конец файла" не определено. При использовании feof часто возникает ошибка, когда последние считанные данные выводятся два раза. Это связано с тем, что данные записывается в буфер ввода, последнее считывание происходит с ошибкой и функция возвращает старое считанное значение.
Этот пример сработает с ошибкой (скорее всего) и выведет последний символ файла два раза.
Решение – не использовать feof. Например, хранить общее количество записей или использовать тот факт, что функции fscanf и пр. обычно возвращают число верно считанных и сопоставленных значений.
Примеры
1. В одном файле записаны два числа - размерности массива. Заполним второй файл массивом случайных чисел.
2. Пользователь копирует файл, при этом сначала выбирает режим работы: файл может выводиться как на консоль, так и копироваться в новый файл.
3. Пользователь вводит данные с консоли и они записываются в файл до тех пор, пока не будет нажата клавиша esc. Проверьте программу и посмотрите. как она себя ведёт в случае, если вы вводите backspace: что выводится в файл и что выводится на консоль.
4. В файле записаны целые числа. Найти максимальное из них. Воспользуемся тем, что функция fscanf возвращает число верно прочитанных и сопоставленных объектов. Каждый раз должно возвращаться число 1.
Другое решение считывать числа, пока не дойдём до конца файла.
5. В файле записаны слова: русское слово, табуляция, английское слово, в несколько рядов. Пользователь вводит английское слово, необходимо вывести русское.
Файл с переводом выглядит примерно так
солнце sun
карандаш pen
шариковая ручка pencil
дверь door
окно windows
стул chair
кресло armchair
и сохранён в кодировке cp866 (OEM 866). При этом важно: последняя пара cлов также заканчивается переводом строки.
Алгоритм следующий - считываем строку из файла, находим в строке знак табуляции, подменяем знак табуляции нулём, копируем русское слово из буфера, копируем английское слово из буфера, проверяем на равенство.
6. Подсчитать количество строк в файле. Будем считывать файл посимвольно, считая количество символов '\n' до тех пор, пока не встретим символ EOF. EOF – это спецсимвол, который указывает на то, что ввод закончен и больше нет данных для чтения. Функция возвращает отрицательное значение в случае ошибки.
ЗАМЕЧАНИЕ: EOF имеет тип int, поэтому нужно использовать int для считывания символов. Кроме того, значение EOF не определено стандартом.
До этого при вводе-выводе данных мы работали со стандартными потоками — клавиатурой и монитором. Теперь рассмотрим, как в языке C реализовано получение данных из файлов и запись их туда. Перед тем как выполнять эти операции, надо открыть файл и получить доступ к нему.
В языке программирования C указатель на файл имеет тип FILE и его объявление выглядит так:
С другой стороны, функция fopen() открывает файл по указанному в качестве первого аргумента адресу в режиме чтения ("r"), записи ("w") или добавления ("a") и возвращает в программу указатель на него. Поэтому процесс открытия файла и подключения его к программе выглядит примерно так:
Примечание. В случае использования относительной адресации текущим/рабочим каталогом в момент исполнения программы должен быть тот, относительно которого указанный относительный адрес корректен. Место нахождения самого исполняемого файла не важно.
При чтении или записи данных в файл обращение к нему осуществляется посредством файлового указателя (в данном случае, myfile).
Если в силу тех или иных причин (нет файла по указанному адресу, запрещен доступ к нему) функция fopen() не может открыть файл, то она возвращает NULL. В реальных программах почти всегда обрабатывают ошибку открытия файла в ветке if , мы же далее опустим это.
Объявление функции fopen() содержится в заголовочном файле stdio.h, поэтому требуется его подключение. Также в stdio.h объявлен тип-структура FILE.
После того, как работа с файлом закончена, принято его закрывать, чтобы освободить буфер от данных и по другим причинам. Это особенно важно, если после работы с файлом программа продолжает выполняться. Разрыв связи между внешним файлом и указателем на него из программы выполняется с помощью функции fclose() . В качестве параметра ей передается указатель на файл:
В программе может быть открыт не один файл. В таком случае каждый файл должен быть связан со своим файловым указателем. Однако если программа сначала работает с одним файлом, потом закрывает его, то указатель можно использовать для открытия второго файла.
Чтение из текстового файла и запись в него
fscanf()
Функция fscanf() аналогична по смыслу функции scanf() , но в отличии от нее осуществляет форматированный ввод из файла, а не стандартного потока ввода. Функция fscanf() принимает параметры: файловый указатель, строку формата, адреса областей памяти для записи данных:
Возвращает количество удачно считанных данных или EOF. Пробелы, символы перехода на новую строку учитываются как разделители данных.
Допустим, у нас есть файл содержащий такое описание объектов:
Тогда, чтобы считать эти данные, мы можем написать такую программу:
В данном случае объявляется структура и массив структур. Каждая строка из файла соответствует одному элементу массива; элемент массива представляет собой структуру, содержащую строковое и два числовых поля. За одну итерацию цикл считывает одну строку. Когда встречается конец файла fscanf() возвращает значение EOF и цикл завершается.
fgets()
Функция fgets() аналогична функции gets() и осуществляет построчный ввод из файла. Один вызов fgets() позволят прочитать одну строку. При этом можно прочитать не всю строку, а лишь ее часть от начала. Параметры fgets() выглядят таким образом:
Такой вызов функции прочитает из файла, связанного с указателем myfile, одну строку текста полностью, если ее длина меньше 50 символов с учетом символа '\n', который функция также сохранит в массиве. Последним (50-ым) элементом массива str будет символ '\0', добавленный fgets() . Если строка окажется длиннее, то функция прочитает 49 символов и в конце запишет '\0'. В таком случае '\n' в считанной строке содержаться не будет.
В этой программе в отличие от предыдущей данные считываются строка за строкой в массив arr. Когда считывается следующая строка, предыдущая теряется. Функция fgets() возвращает NULL в случае, если не может прочитать следующую строку.
getc() или fgetc()
Функция getc() или fgetc() (работает и то и другое) позволяет получить из файла очередной один символ.
Приведенный в качестве примера код выводит данные из файла на экран.
Запись в текстовый файл
Также как и ввод, вывод в файл может быть различным.
- Форматированный вывод. Функция fprintf ( файловый_указатель, строка_формата, переменные ) .
- Посточный вывод. Функция fputs ( строка, файловый_указатель ) .
- Посимвольный вывод. Функция fputc() или putc( символ, файловый_указатель ) .
Ниже приводятся примеры кода, в которых используются три способа вывода данных в файл.
Запись в каждую строку файла полей одной структуры:
Построчный вывод в файл ( fputs() , в отличие от puts() сама не помещает в конце строки '\n'):
Пример посимвольного вывода:
Чтение из двоичного файла и запись в него
С файлом можно работать не как с последовательностью символов, а как с последовательностью байтов. В принципе, с нетекстовыми файлами работать по-другому не возможно. Однако так можно читать и писать и в текстовые файлы. Преимущество такого способа доступа к файлу заключается в скорости чтения-записи: за одно обращение можно считать/записать существенный блок информации.
При открытии файла для двоичного доступа, вторым параметром функции fopen() является строка "rb" или "wb".
Тема о работе с двоичными файлами достаточно сложная, для ее изучения требуется отдельный урок. Здесь будут отмечены только особенности функций чтения-записи в файл, который рассматривается как поток байтов.
Функции fread() и fwrite() принимают в качестве параметров:
- адрес области памяти, куда данные записываются или откуда считываются,
- размер одного данного какого-либо типа,
- количество считываемых данных указанного размера,
- файловый указатель.
Эти функции возвращают количество успешно прочитанных или записанных данных. Т.е. можно "заказать" считывание 50 элементов данных, а получить только 10. Ошибки при этом не возникнет.
Пример использования функций fread() и fwrite() :
Здесь осуществляется попытка чтения из первого файла 50-ти символов. В n сохраняется количество реально считанных символов. Значение n может быть равно 50 или меньше. Данные помещаются в строку. То же самое происходит со вторым файлом. Далее первая строка присоединяется ко второй, и данные сбрасываются в третий файл.
Ввод строки в консольном приложении для пользователя не представляет особых сложностей - он просто печатает необходимое количество знаков и нажимает ENTER.
А вот для начинающего программиста на С++ всё может оказаться не так просто и привести к потере времени и сил на решение простой задачи. Зачем эта заморочка существует в С++, лично мне вообще непонятно. Но она существует. И заключается она в следующем.
Строка с пробелами не читается
Точнее, не читается она привычным для С++ способом. Например, если у вас есть переменная str , то вы можете попытаться прочитать в эту переменную строку, введённую пользователем:
И всё будет прекрасно работать, если пользователь введёт строку БЕЗ пробелов. Однако вас ждёт неприятность, если во вводимой строке будут пробелы. Например, если пользователь введёт:
100 200 300
то в переменной str после выполнения инструкции cin >> str; будет только 100 . То есть строка будет прочитана ТОЛЬКО до первого пробела.
ЛИРИЧЕСКОЕ ОТСТУПЛЕНИЕ
Вот за это я и не люблю С++. Ну зачем, спрашивается, так было делать?
Но отбросим лирику в сторону, и разберёмся, что же нам в этом случае делать?
А надо просто использовать другой способ. Например, такой:
В этом случае всё будет работать как надо:
Однако если вы думаете, что на этом ваши неприятности закончились, то зря. Это же С++. А не какой-нибудь Паскаль для лохов. У меня вообще иногда возникает подозрение, что создатель С++ преследовал цель не придумать мощный язык, а сделать так, чтобы программировать на нём могли только избранные. Иначе нафига в этом языке столько заморочек?
Итак, вот вам следующий нежданчик:
Здесь мы используем getline() , которая может читать целую строку (в том числе и с пробелами). Но, как вы думаете, сможем ли мы прочитать эту строку в этой программе?
Наверняка вы уже почувствовали подвох. И заключается он в том, что в этой программе вы не сможете прочитать строку str .
Но что же произойдёт? А то, что в переменную str запишется недочитанный буфер ввода, то есть строка " 200 300" , и мы не сможем ввести новую строку.
Почему так? Потому что первый раз строка была прочитана не полностью, а только до первого пробела. Оставшиеся же символы остались в буфере, и новая строка не может быть введена, пока буфер полностью не прочитан.
Поэтому перед тем, как вводить новую строку, нам надо либо прочитать буфер до конца, либо очистить его.
Пробежаться до конца буфера можно, например, так:
Очистить буфер ввода cin можно, например, так:
то есть программа может быть примерно такой:
Ну что же, теперь, надеюсь, вы представляете, как пользователю ввести строку с пробелами в С++, и эта задачка не поставит вас в тупик.
Как ввести строку с пробелами через cin
Строку с пробелами можно ввести и привычным способом через cin , но для этого потребуется несколько переменных:
В этом случае вывод будет таким:
Как видите, так тоже можно. Правда пробелы при этом способе из введённой пользователем строки исключаются. Кроме того, не всегда удобно использовать несколько переменных для ввода. К тому же пользователю надо как-то знать, сколько пробелов допускается в строке. Ну или сильно усложнять код для обработки ввода.
На этом пока всё. Изучайте С++. Конечно, это далеко не самый простой язык. Но, с другой стороны, его изучение доставит вам много радости от неожиданных открытий, которых вы никогда не найдёте в более простых языках.
Так что я, например, использую Паскаль для работы (когда требуется сделать быстро и без лишних заморочек), а С++ для удовольствия, когда хочется немного помучиться, а результат и сроки не висят над тобой как Дамоклов меч…
В программе строки могут определяться следующим образом:
- как строковые константы;
- как массивы символов;
- через указатель на символьный тип;
- как массивы строк.
Кроме того, должно быть предусмотрено выделение памяти для хранения строки.
Под хранение строки выделяются последовательно идущие ячейки оперативной памяти. Таким образом, строка представляет собой массив символов. Для хранения кода каждого символа строки отводится 1 байт.
Строковые константы размещаются в статической памяти. Начальный адрес последовательности символов в двойных кавычках трактуется как адрес строки. Строковые константы часто используются для осуществления диалога с пользователем в таких функциях, как printf() .
При определении массива символов необходимо сообщить компилятору требуемый размер памяти.
Компилятор также может самостоятельно определить размер массива символов, если инициализация массива задана при объявлении строковой константой:
char m3[]=< 'Т','и','х','и','е',' ','д','о','л','и','н','ы',' ','п','о','л','н','ы',' ','с','в','е','ж','е','й',' ','м','г','л','о','й','\0' >;
В этом случае имена m2 и m3 являются указателями на первые элементы массивов:
При объявлении массива символов и инициализации его строковой константой можно явно указать размер массива, но указанный размер массива должен быть больше, чем размер инициализирующей строковой константы:
Для задания строки можно использовать указатель на символьный тип .
В этом случае объявление массива переменной m4 может быть присвоен адрес массива:
*m4 эквивалентно m3[0]= 'Т'
*(m4+1) эквивалентно m3[1]= 'и'
Здесь m3 является константой-указателем. Нельзя изменить m3 , так как это означало бы изменение положения (адреса) массива в памяти, в отличие от m4 .
Для указателя можно использовать операцию увеличения (перемещения на следующий символ):
Массивы символьных строк
Иногда в программах возникает необходимость описание массива символьных строк . В этом случае можно использовать индекс строки для доступа к нескольким разным строкам.
Инициализация выполняется по правилам, определенным для массивов.
Тексты в кавычках эквивалентны инициализации каждой строки в массиве. Запятая разделяет соседние
последовательности.
Кроме того, можно явно задавать размер строк символов, используя описание, подобное такому:
Разница заключается в том, что такая форма задает «прямоугольный» массив, в котором все строки имеют одинаковую длину.
Свободный массив
определяет свободный массив, где длина каждой строки определяется тем указателем, который эту строку инициализирует. Свободный массив не тратит память напрасно.
Операции со строками
Большинство операций языка Си, имеющих дело со строками, работает с указателями. Для размещения в оперативной памяти строки символов необходимо:
- выделить блок оперативной памяти под массив;
- проинициализировать строку.
Для выделения памяти под хранение строки могут использоваться функции динамического выделения памяти. При этом необходимо учитывать требуемый размер строки:
Функции ввода строк
Для ввода строки может использоваться функция scanf() . Однако функция scanf() предназначена скорее для получения слова, а не строки. Если применять формат "%s" для ввода, строка вводится до (но не включая) следующего пустого символа, которым может быть пробел, табуляция или перевод строки.
Для ввода строки, включая пробелы, используется функция
В качестве аргумента функции передается указатель на строку, в которую осуществляется ввод. Функция просит пользователя ввести строку, которую она помещает в массив, пока пользователь не нажмет Enter.
Функции вывода строк
Для вывода строк можно воспользоваться рассмотренной ранее функцией
или в сокращенном формате
Для вывода строк также может использоваться функция
которая печатает строку s и переводит курсор на новую строку (в отличие от printf() ). Функция puts() также может использоваться для вывода строковых констант, заключенных в кавычки.
Функция ввода символов
Для ввода символов может использоваться функция
которая возвращает значение символа, введенного с клавиатуры. Указанная функция использовалась в рассмотренных ранее примерах для задержки окна консоли после выполнения программы до нажатия клавиши.
Функция вывода символов
Для вывода символов может использоваться функция
которая возвращает значение выводимого символа и выводит на экран символ, переданный в качестве аргумента.
Пример Посчитать количество введенных символов во введенной строке.
Результат выполнения
Добрый день! В этой статье я расскажу о том, как написать программу, которая будет считывать строки из файла. Покажу как записать их в массив или вывести. При написании программы будут использоваться функции из стандартной библиотеки языка C++.
Стандартная библиотека языка C++ <fstream> включает множество функций для работы с файлами. Описание функций можно найти в сети или в учебниках по C++. Здесь же я опишу одну, которая позволит произвести чтение строки из файла.
Содержание файла strings.txt
Три строки, содержащиеся в файле, я запишу массив и выведу на экран.
Пингвин читает содержимое файла
Переходим к написанию программы на C++.
Нашей программе понадобятся два заголовочных файла <iostream> и <fstream>. Первый нужен будет для использования вывода на консоль, второй для работы с файлами.
Объявим две целочисленные константы len и strings, они будут хранить максимальную длину наших строк и количество строк. Объявим символьную константу ch, которая будет хранить разделяющий символ. Первые две константы будут использоваться для объявления массива. Мой файл содержит 3 строки
При помощи значений двух первых констант объявим двумерный массив символов.
Создадим объект класса ostream, в конструктор поместим адрес файла, флаги открытия.
Флаг ios::in позволяет открыть файл для считывания, ios::binary открывает его в двоичном режиме.
Далее стоит проверить открылся ли файл, если не открылся, то завершаем работу программы.
В данный момент программа имеет такой вид
Теперь остается описать алгоритм считывания строк из файла и занесения их в массив с последующим выводом. Для этого понадобится цикл от нуля до strings с инкрементом переменной r. Во время каждого прохода цикла используем перегруженную функцию getline() объекта fs с тремя аргументами.
fs.getline(Массив_символов, Макс_длина_строки, Разделитель_строк)
Функция считывает символы из файла, пока не считает количество равное Макс_длина_строки, либо не встретит на своём пути символ равный Разделитель_строк, а после записывает считанные символы в Массив_символов. В качестве разделителя в моём текстовом файле используется перенос строки.
После сразу же выводим содержимое строки, хранящееся в массиве, при помощи поточного вывода в консоль cout.
Весь листинг конечной программы
За счет константных переменных её можно легко модернизировать. Изменив константу strings, можно указать количество выводимых строк. Чтение из файла будет производится до тех пор, пока массив не заполнится нужным количеством строк. Изменив константу ch, можно изменить разделитель строк(Например, можно разделять их пробелом и занести в массив отдельные слова из файла и т.д.).
Если Вас интересует запись в файл, то почитайте статью о чтении из input.txt и записи данных в файл output.txt.
Пример работы string и пример считывания всех строк из файла в массив с последующим выводом
Читайте также: