Как найти соотношение сторон подобных треугольников
Признака подобия треугольников
Две фигуры `F` и `F'` называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры `F` и `F'` подобны, то пишется `F
F'`. Напомним, что запись подобия треугольников `Delta ABC
Delta A_1 B_1 C_1` означает, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. `A` переходит в `A_1`, `B` - в `B_1`, `C` - в `C_1`.
Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если `Delta ABC
Delta A_1B_1C_1`, то `/_ A = /_ A_1`, `/_ B = /_ B_1`, `/_ C = /_ C_1`,
`A_1B_1 : AB = B_1C_1 : BC = C_1A_1 : CA`.
Два треугольника подобны, если:
1. два угла одного соответственно равны двум углам другого;
2. две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;
3. три стороны одного треугольника пропорциональны трём сторонам другого.
В решении задач и доказательстве теорем часто используется утверждение, которое, чтобы не повторять каждый раз, докажем сейчас отдельно.
Если две стороны треугольника пересекает прямая, параллельная третьей стороне (рис. 9), то она отсекает треугольник, подобный данному.
Действительно, из параллельности `MN` и `AC` следует, что углы `1` и `2` равны. Треугольники `ABC` и `MBN` имеют два равных угла: общий угол при вершине `B` и равные углы `1` и `2`. По первому признаку эти треугольники подобны.
И сразу применим это утверждение в следующем примере, в котором устанавливается важное свойство трапеции.
Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках `M` и `N`. Найти длину отрезка `MN`, если основания трапеции равны `a` и `b`.
1. Пусть `O` - точка пересечения диагоналей, `AD = a`, `BC = b`. Прямая `MN` параллельна основанию `AD` (рис. 10а), следовательно, $$ MO\parallel AD$$, треугольники `BMO` и `BAD` подобны, поэтому
2. $$ AD\parallel BC$$, `Delta AOD
Delta COB` по двум углам (рис. 10б):
`(OD)/(OB) = (AD)/(BC)`, то есть `(OD)/(OB) = a/b`.
3. Учитывая, что `BD = BO + OD` находим отношение
`(BO)/(BD) = (BO)/(BO + OD) = 1/(1 + OD//BO) = b/(a + b)`.
Подставляя это в (1), получаем `MO = (ab)/(a + b)`; аналогично устанавливаем, что `ON = (ab)/(a + b)`, таким образом `MN = (2ab)/(a + b)`.
Точки `M` и `N` лежат на боковых сторонах `AB` и `CD` трапеции `ABCD` и $$ MN\parallel AD$$ (рис. 11а). Найти длину `MN`, если `BC = a`, `AD = 5a`, `AM : MB = 1:3`.
1. Пусть $$ BF\Vert CD$$ и $$ ME\Vert CD$$ (рис. 11б), тогда `/_ 1 = /_ 2`, `/_ 3 = /_ 4` (как соответствующие углы при пересечении двух параллельных прямых третьей) и `Delta AME
Delta MBF`. Из подобия следует `(AE)/(MF) = (AM)/(MB) = 1/3`.
2. Обозначим `MN = x`. По построению `BCNF` и `MNDE` - параллелограммы, `FN = a`, `ED = x` и, значит, `MF = x - a`; `AE = 5a - x`. Итак, имеем `(5a - x)/(x - a) = 1/3`, откуда находим `x = 4a`.
Напомним, что отношение периметров подобных треугольников равно отношению их сходственных сторон. Верно также следующее утверждение: отношение медиан, биссектрис и высот, проведённых к сходственным сторонам в подобных треугольниках, равно отношению сходственных сторон.
Отношение радиусов вписанных окружностей, как и отношение радиусов описанных окружностей, в подобных треугольниках также равно отношению сходственных сторон.
Попытайтесь доказать это самостоятельно.
Прямоугольные треугольники подобны, если:
1. они имеют по равному острому углу;
2. катеты одного треугольника пропорциональны катетам другого;
3. гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого.
Два первых признака следуют из первого и второго признаков подобия треугольников, поскольку прямые углы равны. Третий признак следует, например, из второго признака подобия и теоремы Пифагора.
Заметим, что высота прямоугольного треугольника, опущенная на гипотенузу, разбивает его на два прямоугольных треугольника, подобных между собой и подобных данному. Доказанные в § 1 метрические соотношения Свойств 1, 2, 3 можно доказать, используя подобие указанных треугольников.
СВОЙСТВА ВЫСОТ И БИССЕКТРИС
Если в треугольнике `ABC` нет прямого угла, `A A_1` и `BB_1` - его высоты, то `Delta A_1B_1C
Delta ABC` (этот факт можно сформулировать так: если соединить основания двух высот, то образуется треугольник, подобный данному).
Как всегда, полагаем `AB = c`, `BC = a`, `AC = b`.
а) Треугольник `ABC` остроугольный (рис. 12а).
В треугольнике `A A_1C` угол `A_1` - прямой, `A_1C = AC cos C = ul (b cos C)`.
В треугольнике `B B_1C` угол `B_1` - прямой, `B_1C = BC cos C = ul (a cos C)`.
В треугольниках `A_1 B_1C` и `ABC` угол `C` общий, прилежащие стороны пропорциональны: `(A_1C)/(AC) = (B_1C)/(BC) = cos C`.
Таким образом, `Delta A_1 B_1 C
Delta ABC` с коэффициентом подобия `ul (cos C)`. (Заметим, что `/_ A_1 B_1 C = /_B`).
б) Треугольник `ABC` - тупоугольный (рис. 12б), угол `C` - острый, высота `A A_1` проведена из вершины тупого угла.
$$\left.\begin
\Delta AA_1C, \angle A_1 =90^\circ \Rightarrow A_1C=AC\cdot \cos C =b \cos C;\\
\Delta BB_1C, \angle B_1 =90^\circ \Rightarrow B_1C=BC\cdot \cos C =a \cos C,
\end
\right\>\Rightarrow \Delta A_1B_1C\sim \Delta ABC,$$
коэффициент подобия `ul (cos C)`, `/_ A_1 B_1 C = /_B`.
Случай, когда угол `B` тупой, рассматривается аналогично.
в) Треугольник `ABC` - тупоугольный (рис. 12в), угол `C` - тупой, высоты `A A_1` и `B B_1` проведены из вершин острых углов.
`varphi = /_ BCB_1 = /_ ACA_1 = 180^@ - /_ C`, `cos varphi = - cos C = |cos C|`.
$$\left.\begin
\Delta AA_1C, \angle A_1 =90^\circ \Rightarrow A_1C=AC\cdot \cos\varphi =b |\cos C|;\\
\Delta BB_1C, \angle B_1 =90^\circ \Rightarrow B_1C=BC\cdot \cos\varphi =b |\cos C|,
\end
\right\>\Rightarrow \Delta A_1B_1C\sim \Delta ABC$$
с коэффициентом подобия `ul (k = |cos C|`, `(/_A_1B_1C=/_B)`.
В остроугольном треугольнике `ABC` проведены высоты `A A_1`, `B B_1`, `C C_1` (рис. 13).
Треугольник, вершинами которого служат основания высот, называется «высотным» треугольником (или ортотреугольником).
Доказать, что лучи `A_1 A`, `B_1 B` и `C_1 C` являются биссектрисами углов высотного треугольника `A_1 B_1 C_1` (т. е. высоты остроугольного треугольника являются биссектрисами ортотреугольника).
По первой лемме о высотах `Delta A_1 B_1 C
Delta ABC`, `/_ A_1 B_1 C = /_ B`.
Аналогично `Delta AB_1C_1
Delta ABC`, `/_ AB_1 C_1 = /_ B`, т. е. `/_A_1 B_1C = /_ AB_1 C_1`.
Так как `BB_1` - высота, то `/_AB_1B = /_CB_1B = 90^@`.
Поэтому `/_C_1B_1B = /_A_1B_1B = 90^@ - /_B`, т. е. луч `B_1B` - биссектриса угла `A_1B_1C_1`.
Аналогично доказывается, что `A A_1` - биссектриса угла `B_1 A_1 C_1` и `C_1C` - биссектриса угла `B_1 C_1 A_1`.
Высоты `A A_1`, `B B_1` треугольника `ABC` пересекаются в точке `H` (рис. 14). Доказать, что имеет место равенство `AH * H A_1 = BH * HB_1`, т. е. произведение отрезков одной высоты равно произведению отрезков другой высоты.
Delta BHA_1`, имеют по равному острому углу при вершине `H` (заметим, что этот угол равен углу `C`). Из подобия следует `(AH)/(BH) = (HB_1)/(HA_1)`, откуда `AH * HA_1 = BH * HB_1`. Для тупоугольного треугольника утверждение также верно. Попробуйте доказать самостоятельно.
Высоты `A A_1` и `B B_1` треугольника `ABC` пересекаются в точке `H`, при этом `BH = HB_1` и `AH = 2 HA_1` (рис. 15). Найти величину угла `C`.
1. По условию пересекаются высоты, поэтому треугольник остроугольный. Положим `BH = HB_1 = x` и `HA_1 = y`, тогда `AH = 2y`. По второй лемме о высотах `AH * HA_1 = BH * HB_1`, т. е. `x^2 = 2y^2`, `x = y sqrt 2`.
2. В треугольнике `AHB_1` угол `AHB_1` равен углу `C` (т. к. угол `A_1 AC` равен `90^@ - C`), поэтому `cos C = cos (/_ AHB_1) = x/(2y) = sqrt 2/ 2`. Угол `C` - острый, `/_ C = 45^@`.
Установим ещё одно свойство биссектрисы угла треугольника.
Биссектриса внутреннего угла треугольника делит противолежащую этому углу сторону на отрезки, пропорциональные прилежащим сторонам, т. е. если `AD` - биссектриса треугольника `ABC`, то `(BD)/(DC) = (AB)/(AC)`.
Проведём через точку `B` прямую параллельно биссектрисе `DA`, пусть `K` - её точка пересечения с прямой `AC` (рис. 16).
Параллельные прямые `AD` и `KB` пересечены прямой `KC`, образуются равные углы `1` и `3`. Те же прямые пересечены и прямой `AB`, здесь равные накрест лежащие углы `2` и `4`. Но `AD` - биссектриса, `/_1 = /_2`, следовательно `/_3 = /_4`. Отсюда следует, что треугольник `KAB` равнобедренный, `KA = AB`.
По теореме о пересечении сторон угла параллельными прямыми из $$ AD\Vert KB$$ следует `(BD)/(DC) = (KA)/(AC)`. Подставляя сюда вместо `KA` равный ему отрезок `AB`, получим `(BD)/(DC) = (AB)/(AC)`. Теорема доказана.
Биссектриса треугольника делит одну из сторон треугольника на отрезки длиной `3` и `5`. Найти в каких пределах может изменяться периметр треугольника.
Пусть `AD` - биссектриса и `BD = 3`, `DC = 5` (рис. 17).
По свойству биссектрисы `AB : AC = 3:5`. Положим `AB = 3x`, тогда `AC = 5x`. Каждая сторона треугольника должна быть меньше суммы двух других сторон, т. е. `ul (5x < 3x + 8)`, `3x < 5x + 8` и `ul (8 < 3x + 5x)`. Получаем ограничения `x<4` и `x > 1`.
Определение 1. Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.
Определение 2. Сходственными называются стороны подобных треугольников, лежащих напротив равных углов.
На рисунке 1 углы треугольников \( \small ABC \) и \( \small A_1B_1C_1 \) соответственно равны:
(1) |
Тогда стороны \( \small AB \) и \( \small A_1B_1 \), \( \small BC \) и \( \small B_1C_1 \), \( \small AC \) и \( \small A_1C_1 \) называются сходственными.
Определение 1 можно понимать так: два треугольника подобны, если для них можно ввести обозначения и (Рис.1) так, что
Если два треугольника и подобны, то это обозначают так:
Коэффициент подобия треугольников
Коэффициентом подобия треугольников k − это число, равное отношению сходственных сторон (см. формулу (2)).
Перый признак подобия треугольников
Теорема 1. Если два угла одного треугольника соответсвенно равны двум углам другого треугольника, то такие треугольники подобны.
Доказательство. Пусть заданы два треугольника и и пусть , . Докажем, что (Рис.2).
Поскольку сумма углов треугольника равна 180°, то можно записать:
, |
и, так как , , получим:
Таким образом углы треугольника соответственно равны углам треугольника . Покажем, теперь, что стороны одного треугольника пропорциональны сходственным сторонам другого треугольника, т. е. выполнено равенство (2).
Площади треугольников и по двум сторонам и углу между ними можно вычислить формулами:
Из (3) и (4), и из следует:
С другой стороны:
Из (6) и (7), и из следует:
Левые части уравнения (5) и (8) равны. Следовательно равны и правые части:
Умножая левую и правую части уравнения (9) на , получим:
Продолжая аналогичные рассуждения, получим:
Сравнивая (8) и (11), получим:
Умножая левую и правую части уравнения (12) на , получим:
Из (10) и (13), получим:
То есть стороны треугольника пропорциональны сходственным сторонам треугольника . Что и требовалось доказать.
Второй признак подобия треугольников
Теорема 2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.
Доказательство. Пусть заданы два треугольника и и пусть , . Докажем, что (Рис.3).
Рассмотрим треугольник у которого
, . | (15) |
Из условия (15) следует, что треугольники и подобны (по первому признаку подобия треугольников). Следовательно:
Но по условию теоремы . Поэтому . Треугольники и равны по двум сторонам и углу между ними (сторона AB общая, , (поскольку и )). Следовательно и поскольку , то .
Получили, что и . Тогда по первому признаку подобия треугольников .
Третий признак подобия треугольников
Теорема 3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Доказательство. Пусть стороны треугольников пропорциональны:
Докажем, что . Рассотрим треугольник у которого , (Рис.3). Треугольники и подобны по первому признаку подобия треугольников. Тогда выполнено следующее равенство:
Сравнивая равенства (16) и (17) получаем: , .
Из этих рассуждений следует, что треугольники и равны по трем сторонам (см. статью Треугольники. Признаки равенства треугольников). Тогда , а поскольку , то . Следовательно, по второму признаку подобия треугольников, треугольники и подобны: .
Отношение площадей подобных треугольников
Теорема 4. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Доказательство. Пусть треугольники и подобны. Тогда
, . |
где -коэффициент подобия.
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.
Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.
Признаки подобия треугольников
I признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
II признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Свойства подобных треугольников
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
- Отношение периметров подобных треугольников равно коэффициенту подобия.
- Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Примеры наиболее часто встречающихся подобных треугольников
1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.
2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
Здесь вы найдете подборку задач по теме «Подобные треугольники» .
Что такое равные треугольники, понятно более или менее всем: их можно правильно наложить – и они совпадут.
А вот что такое подобные треугольники? Вроде как «похожие», но как это понимать? И для чего это понимать?
Ну например для решения задание ЕГЭ №16, где подобие треугольников используется для доказательств. Кстати, полностью 16-ю задачу решают менее 1% выпускников!
Читай эту статью, смотри вебинар по 16 задаче и все поймешь!
Подобные треугольники – это треугольники, у которых все углы равны и все стороны строго пропорциональны.
Коэффициент пропорциональности называется коэффициентом подобия \( \displaystyle k\).
\( \angle A = \angle ,\angle B = \angle ,\angle C = \angle \)
Отношение периметров подобных треугольников равно коэффициенту подобия: \( \displaystyle \frac_>>_>_>_>>>>=k\).
Отношение площадей подобных треугольников равно квадрату коэффициента подобия: \( \displaystyle \frac_>>_>_>_>>>>=^>\).
Признаки подобия треугольников:
По двум углам:
По одному углу и отношению заключающих его сторон:
По отношению трех сторон:
Мы разобрали подробно все, что касается треугольников в общем. Кроме того мы рассмотрели отдельные темы:
Но что такое подобные треугольники?
Вот, например, такой и такой:
Похожи эти треугольники? Ты скажешь, конечно же нет!
А такой и такой?
А вот такой и такой?
Посмотри внимательно, тоже похожи.
А теперь строго математически!
Треугольники называются подобными, если у них все углы равны и все стороны пропорциональны.
То есть все углы равны и все стороны одного треугольника в \( \displaystyle 5\), или, в \( \displaystyle 7\), или в \( \displaystyle 8,21\) (или и т.д.) больше сторон другого треугольника.
Записываются слова «треугольник \( \displaystyle ABC\) подобен треугольнику \( \displaystyle >_>_>\)» с помощью такого значка:
То число раз, в которое отличаются стороны подобных треугольников, называются коэффициентом подобия, обозначается обычно с помощью буквы \( \displaystyle k\).
\(\angle A = \angle ,\angle B = \angle ,\angle C = \angle \)
Можно было бы все так и оставить, но, как и в случае с равенством треугольников, ленивым математикам стало слишком неохота проверять равенство ВСЕХ трех углов, и пропорциональность ВСЕХ трех сторон.
И они придумали признаки подобия треугольников .
Признак подобия треугольников «по двум углам»
Если два угла одного треугольника равны двум углам другого треугольника , то такие треугольники подобны.
Помнишь еще, что «\( \displaystyle \sim\)» обозначает слова «подобен»?
Осознай удобство! Вместо того, чтобы проверять 6 утверждений – 3 равных угла и 3 пропорциональных стороны – ДОСТАТОЧНО РАВЕНСТВА ВСЕГО ДВУХ УГЛОВ! И это вообще-то самых удобный и часто используемый признак.
Но есть и еще два. Смотри.
Признак подобия треугольников «две пропорциональные стороны и угол между ними»
Если треугольники имеют одинаковый угол, и стороны, заключающие этот угол, пропорциональны , то такие треугольники подобны.
Признак подобия треугольников «три пропорциональные стороны»
Если три стороны одного треугольника пропорциональны сторонам другого треугольника , то такие треугольники подобны.
Признаки нам рассказали о том, как обнаружить подобные треугольники, а теперь, как же воспользоваться найденным?
Все элементы одного треугольника ровно в \( \displaystyle 2\) (или сколько у тебя выйдет раз) больше, чем элементы другого треугольника.
Не только стороны, но и высоты, биссектрисы, медианы, радиусы вписанной и описанной окружности и т.д.
Есть одно важное исключение: площадь .
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Бонус: Вебинар из нашего курса подготовки к ЕГЭ по математике
ЕГЭ 16. Подобие треугольников. Задачи на доказательство
Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников!
Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства.
Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.
В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.
Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.
Вы научитесь также применять подобие треугольников для расчетных задач (не только для доказательств).
Читайте также: