Как кодируется изображение в памяти компьютера 7 класс
Постараюсь подробно "на пальцах" рассказать, как изображение записывается в память машины.
Итак. Главный тезис: для того, чтобы послать нашему другу мемчик или сохранить демотиватор себе на телефон, требуется изобразить его в "ноликах и единичках".
О памяти машины
Потому что память машины устроена именно так: она содержит сплошняком ячейки, в которых может быть только "0" или "1". Конечно, там не цифры записаны. Они только называются "логический ноль" или "логическая единица". На самом деле, всё зависит от технологии, по которой изготовлена память машины. Например, кучу лет назад (даже "олды" не все припомнят) существовали перфокарты. Такие картонные карточки с цифрами. У них ещё уголок один был срезан:
В качестве логических нулей и единиц использовались дырочки. 864 дырочки или "недырочки". Технология, вообще-то, не очень. Если оператор ошибался в одной дырочке, то карту приходилось менять полностью. Ну, или заклеивать/прорезать лезвием. В современных машинах, конечно, и метод другой, и количество немного больше (в Вкипедии написано, что "кинчик" на 1 гигабайт, в прямом смысле, весил бы 22 тонны, если бы его на перфокартах пробивали).
В разных ситуациях словом бит называют:
- одни значок (дырочка-недырочка, ноль-один)
- одно место, на котором может быть записан либо ноль, либо один
- единицу измерения количества информации
Очень важная деталь. Биты (2) сгруппированы в сегменты по 8 штук. Такие сегменты называются байты . Аналогично битам, у слова "байт" есть несколько значений. Важно то, что машина не может прочитать один бит. За раз ей нужно прочитать целый байт, а только потом из него выделить бит. То же с записью - за раз можно записать только один целый байт, но не бит. Если нам надо поменять один бит, мы должны считать весь байт, заменить там бит с помощью логических операций, перезаписать байт обратно.
Про изображения
Существует масса способов записать картинку только ноликами и единичками. В школе проходят растровый и векторный. К векторному, возможно, я обращусь ещё, а вот про растровый расскажу подробнее. Суть проста: изображение разбивается на одинаковые клеточки. Эти клеточки называются "пиксели" или "пикселы". Кто как привык. Каждый пиксель имеет один единственный цвет. Получается мозаика.
Приведите примеры профессий, связанных с компьютерной графикой?
Для чего нужна видеопамять?
Во Франции, в конце 19 века было распространено направление в живописи –пуантилизм.
Что общего между направлением в живописи и формированием изображения на экране?
Экран монитора в графическом режиме разбит на точки(пиксели), изображение в пуантилизме состоит из разноцветных точек.
Учитель предлагает рассмотреть актуальный для каждого пользователя вопрос:
Как получить наилучшее изображение на экране?
Самостоятельное изучение материала из учебника и технической справки Microsoft Windows. (Приложение 1)
Задание 1. Получите растровый код для изображения букв «Н» на чёрно-белом экране с графической сеткой 8х8.(Рабочий лист ученика)
На слайдах представлены вопросы по прочитанному тексту, сформулированные в тоне, характерном для общения на форумах.
Кто знает, что обозначает разрешение экрана? Как оно влияет на качество изображения?
Что делать? Нечеткое изображение - пытался настроить/откалибровать монитор, ничего не вышло, изображение будто бы двоится…
Подскажите пожалуйста, по каким причинам могут мерцать ЖК-мониторы. У меня два ЖК-монитора, два системника, три видеокарты - при любых конфигурациях мерцают, Мерцание лучше всего заметно НА коричневом и светло-сером фонах
Ответы на эти вопросы ребята формулируют самостоятельно, опираясь на прочитанный материал и привлекая жизненный опыт, возникает небольшая, интересная дискуссия по этому вопросу.
Слайд 10 Проблемные вопросы
Монитор 19” , цветопередача 16 бит. Кто знает, сколько цветов у меня в палитре.
В чем разница между представлением рисунка на экране монитора и на бумаге? Дима, 9 лет…
На данные вопросы ребята затрудняются ответить.
Вывод. Качество изображения зависит от:
Последний параметр ребятам не знаком и требует объяснения.
Как получается цветное изображение на экране
Модель RGB - цветовая модель, которая описывает три основных цвета, воспринимаемых глазом человека.
Каждый пиксель на цветном экране – совокупность трех точек разного цвета: красного, зеленого и синего.
Как получить красный цвет? - при интенсивной красной составляющей;
Как получить белый цвет? – когда все три цвета имеют максимальную составляющую;
Как получить желтый цвет? – смешение интенсивной красной и интенсивной зеленой составляющей;
Как кодируется пиксель
Отвечая на ниже приведенные вопросы, ребята одновременно заполняют таблицу. (Рабочий лист ученика)
Сколько бит на пиксель требуется для черно-белого изображения?
Сколько бит на пиксель требуется для четырехцветного изображения?
Сколько бит требуется для восьмицветной палитры?
Какие изменения произошли при переходе к 16-цветной палитре?
(к трем битам базовых цветов добавляется бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно)
Слайд 17 Сколько бит требуется для палитры, состоящей из 256 цветов?
Если напомнить ребятам начальные строчки стихотворения:
Слон живет у нас в квартире
В доме 2, подъезд 4.
По часам привык питаться:
утром в 8, днем в 16.
Ест на завтрак непременно 32 охапки сена.
После утренней прогулки 64 булки.
На обед ему приносим огурцов 128.
Помидоров может съесть 250 и 6.
Съест блинов 512.
Это если не стараться. А замесишь на кефире –-1024,
Следует быстрый ответ - 8 бит.
Учитель записывает на доске формулу, устанавливающую связь между количеством цветов в палитре (K) и числом бит на пиксель(b).
Глубина цвета (цветопередача) — термин компьютерной графики, означающий объём памяти в количестве бит, используемых для хранения и представления цвета при кодировании одного пикселя растровой графики.
Самостоятельное решение задач (Рабочий лист ученика):
Задача №1. Сколько бит видеопамяти требуется для кодирования одного пикселя 32 –цветного изображения.
Задача №2. Для хранения информации о цвете пикселя требуется 64 бит. Сколько цветов может быть отображено на экране?
Учитель напоминает, что есть вопрос, на который нужно ответить:
« В чем разница между представлением рисунка на экране монитора и на бумаге? Дима, 7 лет»
Для ответа на вопрос учитель предлагает текст задачи:
«Рассчитайте объем видеопамяти, необходимой для хранения графического изображения, занимающего весь экран монитора с разрешением 640×480 и палитрой 65 536 цветов.»
Теперь ребята уверенно владеют терминами и выделяют главное: качество компьютерного рисунка зависит от многих параметров и для хранения необходим объем видеопамяти.
Палитра 65 536 цветов – высококачественный режим (High color) и для хранения пикселя нужно 16 бит.
Совместное решение задачи.
Весь материал - в архиве.
Под графической информацией подразумевают всю совокупность информации, которая нанесена на самые различные носители — бумагу, пленку, кальку, картон, холст, оргалит, стекло, стену и т. д. В определенной степени графической информацией можно считать и объективную реальность, на которую направлен объектив фотоаппарата или цифровой камеры.
Компьютерная графика - область информатики, изучающая методы и свойства обработки изображений с помощью программно-аппаратных средств.
Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.
Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений - от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации.
Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.
История компьютерной графики
Результатами расчетов на первых компьютерах являлись длинные колонки чисел, напечатанных на бумаге. Для того чтобы осознать полученные результаты, человек брал бумагу, карандаши, линейки и другие чертежные инструменты и чертил графики, диаграммы, чертежи рассчитанных конструкций . Иначе говоря, человек вручную производил графическую обработку результатов вычислений. В графическом виде такие результаты становятся более наглядными и понятными .
Возникла идея поручить графическую обработку самой машине. Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) получались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей. С помощью символьной печати программисты умудрялись получать даже художественные изображения (Рис. 1). В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.
Рис. 1 Символьная печать.
Затем появились специальные устройства для графического вывода на бумагу — графопостроители (другое название — плоттеры). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображения: графики, диаграммы, технические чертежи и прочее. Для управления работо графопостроителей стали создавать специальное программное обеспечение.
Настоящая революция в компьютерной графике произошла с появлением графических дисплеев. На экране графического дисплея стало возможным получать рисунки, чертежи в таком же виде, как на бумаге с помощью карандашей, красок, чертежных инструментов Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Существуют принтеры цветной печати, дающие качество рисунков на уровне фотографии.
Представление графической информации в компьютере
Создавать и хранить графические объекты в компьютере можно двумя способами: как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.
Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора.
Объём растрового изображения определяется как произведение количества точек и информационного объёма одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объём одной точки равен 1 биту, так как точка может быть либо чёрной, либо белой, что можно закодировать одной из двух цифр — 0 или 1.
Информационный объём растрового изображения (V) определяется как произведение числа входящих в изображение точек (N) на информационный объём одной точки (q), который зависит от количества возможных цветов, т. е. V=N ⋅ q.
При чёрно-белом изображении q = 1 бит (например, 1 — точка подсвечивается и 0 — точка не подсвечивается). Поэтому для хранения чёрно-белого (без оттенков) изображения размером 100x100 точек требуется 10000 бит.
Если между чёрным и белым цветами имеется ещё шесть оттенков серого (всего 8), то информационный объём точки равен 3 бита (log28 = 3).
Информационный объём такого изображения увеличивается в три раза: V = 30000бит.
Рассмотрим, сколько потребуется бит для отображения цветной точки: для 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 256 цветов — 8 битов (1 байт).
Разные цвета и их оттенки получаются за счёт наличия или отсутствия трёх основных цветов (красного, синего, зеленого) и степени их яркости. Каждая точка на экране кодируется с помощью 4 битов.
Цветные изображения могут отображаться в различных режимах, соответственно изменяется и информационный объём точки (Рис. 4).
Описание цвета пикселя является кодом цвета.
Количество бит, отводимое на каждый пиксель для представления цвета, называют глубиной цвета (англ. color depth). От количества выделяемых бит зависит разнообразие палитры.
Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.
Чем больше глубина цвета, тем больше объем графического файла.
Для хранения растрового изображения размером 32x32 пикселя отвели 512 байтов памяти.
Каково максимально возможное число цветов в палитре изображения?
Решение . Число точек изображения равно 32 ⋅ 3 2 = 1024. Мы знаем, что 512 байтов = 512 ⋅ 8=4096 бит. Найдём глубину цвета 4096÷1024=4. Число цветов равно 24 = 16.
FF — наибольшая яркость цветовой компоненты, для получения различных оттенков одного и того же цвета изменяют яркость.
Также следует отметить, что равное или почти равное сочетание цветовых компонент обозначает серый цвет разной интенсивности.
Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами.
Для каждой линии указываются её тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки.
Рассмотрим, например, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:
- координаты центра окружности;
- значение радиуса r;
- цвет заполнения (если окружность не прозрачная);
- цвет и толщина контура (в случае наличия контура).
Информация о векторном рисунке кодируется обычным способом, как хранятся тексты, формулы, числа, т. е. хранится не графическое изображение, а только координаты и характеристики изображения его деталей. Поэтому для хранения векторных изображений требуется существенно меньше памяти, чем растровых изображений.
Кодирование графической информации
Графическую информацию можно представлять в двух формах: аналоговой и цифровой.
Живописное полотно, цвет которого изменяется непрерывно — это пример аналогового представления.
Изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета — это цифровое или еще именуют как дискретное представление.
Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в цифровую. Этот процесс называется «кодирование», поскольку каждому элементу назначается конкретное значение в форме двоичного кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества цветных фрагментов (метод мозаики).
Графическая информация в аналоговой форме представляется в виде рисунка, картинки, а также слайда на фотопленке и полученную по нему аналоговую фотографию.
Изображение кодируется в цифровую форму с использованием элементарных геометрических объектов, таких как точки, линии, сплайны и многоугольники или матрицы фиксированного размера, состоящей из точек (пикселей) со своими геометрическими параметрам.
Современная компьютерная графика
Научная графика. Это направление появилось самым первым. Назначение — визуализация (т. е. наглядное изображение) объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов (Рис. 6).
Рис. 6 График комплексной функции в четырехмерном (4D) пространстве.
Деловая графика. Эта область компьютерной графики предназначена для создания иллюстраций, часто используемых в работе различных учреждений.
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Рис. 7 Графики, круговые и столбчатые диаграммы.
Программные средства деловой графики обычно включаются в состав табличных процессоров (электронных таблиц).
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Конструкторская графика. Она используется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом систем автоматизации проектирования (САПР). Графика в САПР используется для подготовки технических чертежей проектируемых устройств (Рис. 8).
Рис. 8. Графика в САПР.
Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наиболее удачной компоновки деталей, прогнозировать последствия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плоские изображения (проекции, сечения) и пространственные, трехмерные, изображения.
Иллюстративная графика. Программные средства иллюстративной графики позволяют человеку использовать компьютер для произвольного рисования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, линеек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности. Поэтому они относятся к прикладному программному обеспечению общего назначения.
Простейшие программные средства иллюстративной графики называются графическими редакторами.
Художественная и рекламная графика. Это сравнительно новая отрасль, но уже ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и многое другое.
Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этого класса графических пакетов является возможность создания реалистических (очень близких к естественным) изображений, а также «движущихся картинок» (рис. 9).
Для создания реалистических изображений в графических пакетах этой категории используется сложный математический аппарат.
Рис. 9 Художественная графика.
Компьютерная анимация. Получение движущихся изображений на дисплее ЭВМ называется компьютерной анимацией. Слово «анимация» означает «оживление».
В недавнем прошлом художники-мультипликаторы создавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Система компьютерной анимации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояний движущегося объекта, а все промежуточные состояния рассчитает и изобразит компьютер. Такая работа также связана с расчетами, опирающимися на математическое описание данного типа движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.
Фрактальная графика. Фрактальная графика – одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа - фрактальная геометрия. Фрактал – структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие (Фрактус – состоящий из фрагментов).
Объекты называются самоподобными когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.
Рис.10 Фрактальная фигура.
Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранятся и изображение строится исключительно по уравнениям.
Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.
Большую часть информации человек получает с помощью зрения и слуха. Важность этих органов чувств обусловлена развитием человека как биологического вида, поэтому человеческий мозг с большой скоростью способен обрабатывать огромное количество графической и звуковой информации.
С появлением компьютеров возникла огромная потребность научить их обрабатывать такую информацию. Как же такую информацию может обработать компьютер?
Итак, кодирование графической информации осуществляется двумя различными способами: векторным и растровым
Программы, работающие с векторной графикой, хранят информацию об объектах, составляющих изображение в виде графических примитивов: прямых линий, дуг окружностей, прямоугольников, закрасок и т.д.
Достоинства векторной графики:
— Преобразования без искажений.
— Маленький графический файл.
— Рисовать быстро и просто.
— Независимое редактирование частей рисунка.
— Высокая точность прорисовки.
— Редактор быстро выполняет операции.
Недостатки векторной графики:
— Векторные изображения выглядят искусственно.
— Ограниченность в живописных средствах.
Программы растровой графики работают с точками экрана (пикселями). Это называется пространственной дискретизацией.
КОДИРОВАНИЕ РАСТРОВОЙ ГРАФИКИ
Давайте более подробно рассмотрим растровое кодирование информации.
Компьютер запоминает цвет каждой точки, а пользователь из таких точек собирает рисунок.
При этом зная количество пикселей по вертикале и горизонтали, мы сможем найти — разрешающую способность изображения.
Разрешающая способность находится по формуле:
где n, m — количество пикселей в изображении по вертикали и горизонтали.
В процессе дискретизации каждый пиксель может принимать различные цвета из палитры цветов. При этом зная количество цветов, которые можно использовать в палитре и воспользовавшись формулой Хартли, мы сможем найти количество информации, которое используется для кодирования цвета точки, что мы будем называть глубиной цвета.
где N — количество цветов в палитре;
i — глубина цвета.
Таким образом, чтобы найти вес изображения достаточно перемножить разрешающую способность изображения на глубину цвета: L=P*i.
Каким именно образом возможно закодировать пиксель? Для этого используются кодировочные палитры.
КОДИРОВОЧНАЯ ПАЛИТРА RGB
Когда художник рисует картину, цвета он выбирает по своему вкусу. Но цвет в компьютере надо стандартизировать, чтобы его можно было распознать. Поэтому надо определить, что такое каждый цвет.
В экспериментах по производству цветных стекол М. В. Ломоносов показал, что получить любой цвет возможно, используя три различных цвета.
Этот факт был обобщен Германом Грассманом в виде законов аддитивного синтеза цвета.
Давайте рассмотрим два из этих законов:
— Закон трехмерности. С помощью трех независимых цветов можно, смешивая их в однозначно определенной пропорции, выразить любой цвет.
— Закон непрерывности. При непрерывном изменении пропорции, в которой взяты компоненты цветовой смеси, получаемый цвет также меняется непрерывно.
Из биологии вы знаете, что рецепторы человеческого глаза делятся на две группы: палочки и колбочки. Палочки более чувствительны к интенсивности поступаемого света, а колбочки — к длине волны.
Если посмотреть, как распределяется количество колбочек по тому, на какую длину волны они «настроены», то количество колбочек «настроенных» на синий, красный и зеленый цвета окажется больше.
Поэтому такие цвета были взяты основными для построения цветовой модели, которая получила название RGB (Red, Green, Blue). То есть задавая количество любого из этих трех цветов, можно получить любой другой. Для кодирования каждого цвета было выделено 8 бит (режим True-Color). Таким образом, количество каждого цвета может изменяться от 0 до 255, часто это количество выражается в шестнадцатеричной системе счисления (от 0 до FF).
Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб.
При этом яркость цвета определяется тем насколько близка к максимальному значению хотя бы одна координата из трех.
Поскольку именно модель RGB соответствовала основному механизму формирования цветного изображения на экране, большинство графических файлов хранят изображение именно в этой кодировке. Если же используется другая модель, например в JPEG , то приходится при выводе информации на экран преобразовывать данные.
КОДИРОВАНИЕ ЗВУКОВОЙ ИНФОРМАЦИИ
Давайте перейдем к кодированию звуковой информации.
Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой.
Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т. е. превращен в последовательность электрических импульсов (двоичных нулей и единиц).
Для этого звуковая волна разбивается на отдельные временные участки.
Гладкая кривая заменяется последовательностью «ступенек». Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание. Причем, чем больше будет количество измерений уровня звукового сигнала в единицу времени, тем качественнее будет звучание. Эта характеристика называется частотой дискретизации Данная характеристика измеряется в Гц.
При этом на каждое измерение выделяется одинаковое количество бит. Такая характеристика называется — глубина кодирования.
Таким образом, чтобы подсчитать вес звуковой волны достаточно перемножить частоту дискретизации, глубины кодирования и времени звучания такого звука. При этом, рассматривая современное звучание, количество звуковых волн может быть различное, например, для стереозвука — это 2, а для квадрозвука — 4.
Читайте также: