Как физика связана с компьютером
Быстрое развитие компьютерной техники и расширение её функциональных возможностей позволяет широко использовать компьютеры на всех этапах учебного процесса. Большие возможности содержатся в использовании компьютеров при обучении физики. Эффективность применения компьютеров в учебном процессе зависит от многих факторов, это и от "железа", и от качества используемых обучающих программ, и от методики обучения, применяемой учителем. Физика - наука экспериментальная, её всегда преподают, сопровождая демонстрационным экспериментом. Методика обучения физике всегда была сложнее методик преподавания других предметов. Использование компьютеров в обучении физики деформирует методику её преподавания как в сторону повышения эффективности обучения, так и в сторону облегчения работы учителя.
Для повышения наглядности обучения можно использовать компьютерную программу "Физика в картинках" НЦ "Физикон"
Изложение нового материала, можно проводить с использованием одного компьютера, находящегося рядом с демонстрационным столом. Все физические эксперименты можно сопровождать использованием компьютерной программы " Физика в картинках ", в которой содержатся и проводятся демонстрации опытов с одновременно строящимися графиками, прилагаются пояснения происходящих процессов и явлений. Этот подход в компьютерной программе применяется ко всем основным темам школьного курса физики, что позволяет быстрее и качественнее объяснить учебный материал, повышает наглядность и доступность обучения, даёт возможность демонстрировать неоднократно явления и процессы как в дискретном, так и анимационном режимах. Просматривать изучаемые явления одновременно со строящимися графиками, менять в программе компьютера параметры факторов, создающих явления. Позволяет разносторонне демонстрировать ход опытов, а учащимся глубже осваивать учебный материал. Использование этой программы эффективно на этапах закрепления и повторения учебного материала как в индивидуальном, так и групповом обучении.
В плане закрепления изученного материала и при самостоятельной работе учащихся можно использовать программу "Уроки физики Кирилл и Мефодий" для 9 и 10 кл - электронные учебники от компании "Кирилл и Мефодий". Данная программа разбита на уроки в соответствии с основными темами курса физики. Имеет чёткое звуковое сопровождение. Хороший подбор контролирующих тестов. Заранее устанавливается нужная тема и после объяснения нового материала запускаются нужные озвученные пункты учебного материала. Это позволяет быстро и кратко ещё раз прокрутить изучаемую тему в сознании учащихся. Иногда для повторения применяют создание кроссвордов на пройденные темы по физике. Выполняют их в программе Microsoft Excel. Организационно проводят это в компьютерном кабинете, где учащиеся рассаживаются по 3-5 человек за компьютер. В группы учащиеся комплектуются самостоятельно. Процесс создания кроссвордов в группе учащихся проходит более интенсивно, более азартно и более интереснее, чем когда за компьютером сидит один учащийся. После создания кроссворда учащиеся обмениваются ими, предварительно записав их на дискеты, (желательно чтобы каждый учащийся наряду с тетрадью имел свою собственную дискету), а затем разгадывают кроссворды, при этом возникает в некотором роде соревновательный эффект: кто сложнее создаст кроссворд, а кто быстрее его разгадает.
Кроме того, можно использовать компьютеры для рисования общего вида графика какого- либо закона или явления с помощью приложения Paint, а более точное построение графиков проводят в программе Microsoft Excel, при этом графики получаются очень красивыми, что вызывает чувство удовлетворения работой. Построение графиков в программе Microsoft Excel позволяет пронаблюдать процесс изменения графика при изменении любых параметров протекающего процесса.
Контроль знаний, точнее, обратную связь устанавливают на основе самоконтроля и самооценки знаний учащихся: перед началом занятия получают информацию от каждого учащегося о степени выполнения им домашнего задания, в виде самооценки за каждую часть домашнего задания, а затем на занятии они подтверждают свои оценки, либо традиционным способом в кабинете физике, либо тестированием с использованием компьютеров, на основе собственных тестов, либо с помощью тестов программы "Уроки физики Кирилла и Мефодия". Также неплохо вписывается в структуру контроля знаний использование компьютерной программы "Репетитор по физике Кирилла и Мефодия". Во время тестирования учащиеся рассаживаются по одному человеку за компьютер. Остальные в это время заняты либо традиционным контролем, либо решением задач по данной теме.
Использование компьютера при решении физических задач.
Задачи решаются в компьютерном классе с помощью электронного задачника программы "Физика в картинках". НЦ " Физикон ".
Нужно сказать, что решение физических задач с помощью компьютера мало что даёт учебному процессу, так как в этом случае в основном используется компьютер как калькулятор и не более. Но, тем не менее, использование компьютера при решении физических задач может давать большой образовательный эффект при условии, если к седьмому классу учащиеся будут владеть программой Microsoft Excel, тогда на полную мощность можно использовать при решении задач функции, графики и мн. др. Кроме того, необходимо создать специальную подборку задач и методику их решения.
Методика использования компьютерных моделей на уроках.
Прежде всего, чрезвычайно удобно использовать компьютерные модели в демонстрационном варианте при объяснении нового материала или при решении задач.
Конечно, такие демонстрации будут иметь успех, если учитель работает с небольшой группой учащихся, которых можно рассадить вблизи монитора компьютера или, если в кабинете имеется проекционная техника, позволяющая отобразить экран компьютера на стенной экран большого размера. В противном случае учитель может предложить учащимся самостоятельно поработать с моделями в компьютерном классе или в домашних условиях, что иногда бывает более реально.
Следует отметить, что при индивидуальной работе учащиеся с большим интересом повозятся с предложенными моделями, пробуют все регулировки, как правило, не особенно вникая в физическое содержание происходящего на экране. Как показывает практический опыт, обычному школьнику конкретная модель может быть интересна в течении 3 -5 минут, а затем неизбежно возникает вопрос: «А что делать дальше?»
Что же нужно сделать, чтобы урок в компьютерном классе был не только интересен по форме, но и дал максимальный учебный эффект?
Учителю необходимо заранее подготовить план работы с выбранной для изучения компьютерной моделью, сформулировать вопросы и задачи, согласованные с функциональными возможностями модели, также желательно предупредить учащихся, что им в конце урока будет необходимо ответить на вопросы или написать небольшой отчёт о проделанной работе. Идеальным является вариант, при котором учитель в начале урока раздаёт учащимся индивидуальные задания в распечатанном виде.
Какие же виды заданий и учебной деятельности можно предложить учащимся при работе с компьютерными моделями и как организовать эту деятельность?
Виды заданий к компьютерным моделям
1.Ознакомительное задание
Это задание предназначено для того, чтобы помочь учащемуся понять назначение модели и освоить её регулировки. Задание содержит инструкции по управлению моделью и контрольные вопросы.
2.Компьютерные эксперименты
После того как компьютерная модель освоена, имеет смысл предложить учащимся 1 - 2 эксперимента. Такие эксперименты позволяют учащимся глубже вникнуть в смысл происходящего на экране.
3.Экспериментальные задачи
Далее можно предложить учащимся экспериментальные задачи, то есть задачи, для решения которых необходимо продумать и поставить соответствующий компьютерный эксперимент. Как правило, учащиеся с особым энтузиазмом берутся за решение таких задач. Несмотря на кажущуюся простоту, такие задачи очень полезны, так как позволяют учащимся увидеть живую связь компьютерного эксперимента и физики изучаемых явлений.
4.Расчётные задачи с последующей компьютерной проверкой
На данном этапе учащимся уже можно предложить 2 - 3 задачи, которые вначале необходимо решить без использования компьютера, а затем проверить полученный ответ, поставив компьютерный эксперимент. При составлении таких задач необходимо учитывать как функциональные возможности модели, так и диапазоны изменения числовых параметров. Следует отметить, что, если эти задачи решаются в компьютерном классе, то время, отведённое на решение любой из этих задач, не должно превышать 5 -8 минут. В противном случае, использование компьютера становится мало эффективным. Задачи, требующие более длительного времени для решения, имеет смысл предложить учащимся для предварительной проработки в виде домашнего задания и/или обсудить эти задачи на обычном уроке в кабинете физики, и только после этого использовать их в компьютерном классе.
5.Неоднозначные задачи
В рамках этого задания учащимся предлагается решить задачи, в которых необходимо определить величины двух зависимых параметров, например, в случае бросания тела под углом к горизонту, начальную скорость и угол броска, для того чтобы тело пролетело заданное расстояние. При решении такой задачи учащийся должен вначале самостоятельно выбрать величину одного из параметров с учётом диапазона, заданного авторами модели, а затем решить задачу, чтобы найти величину второго параметра, и только после этого поставить компьютерный эксперимент для проверки полученного ответа. Понятно, что такие задачи имеют множество решений.
6.Задачи с недостающими данными
При решении таких задач учащийся вначале должен разобраться, какого именно параметра не хватает для решения задачи, самостоятельно выбрать его величину, а далее действовать, как и в предыдущем задании.
7.Творческие задания
В рамках данного задания учащемуся предлагается составить одну или несколько задач, самостоятельно решить их (в классе или дома), а затем, используя компьютерную модель, проверить правильность полученных результатов. На первых порах это могут быть задачи, составленные по типу решённых на уроке, а затем и нового типа, если модель это позволяет.
8.Исследовательские задания
Наиболее способным учащимся можно предложить исследовательское задание, то есть задание, в ходе выполнения которого им необходимо спланировать и провести ряд компьютерных экспериментов, которые бы позволили подтвердить или опровергнуть определённые закономерности. Самым сильным ученикам можно предложить самостоятельно сформулировать такие закономерности. Заметим, что в особо сложных случаях, учащимся можно помочь в составлении плана необходимых экспериментов или предложить план, заранее составленный учителем.
9.Проблемные задания
С помощью ряда моделей можно продемонстрировать, так называемые, проблемные ситуации, то есть ситуации, которые приводят учащихся к кажущемуся или реальному противоречию, а затем предложить им разобраться в причинах таких ситуаций с использованием компьютерной модели.
10.Качественные задачи
Некоторые модели вполне можно использовать и при решении качественных задач. Такие задачи или вопросы, конечно, лучше сформулировать, поработав с моделью, заранее.
При регулярной работе с компьютерным курсом из придуманных заданий имеет смысл составить компьютерные лабораторные работы, в которых вопросы и задачи расположены по мере увеличения их сложности. Это занятие достаточно трудоёмкое, но именно такие работы дают наибольший учебный эффект.
В последнее время можно часто слышать вопросы: "А нужен ли компьютер на уроках физики? Не вытеснят ли компьютерные имитации реальный эксперимент из учебного процесса?" Чаще всего такие вопросы задают учителя, не владеющие информационными технологиями и не очень понимающие, чем могут быть полезны эти технологии в преподавании.
Давайте попробуем ответить на вопрос: "Когда же оправдано использование компьютерных программ на уроках физики?" Мы считаем, что, прежде всего, в тех случаях, в которых возникает существенное преимущество по сравнению с традиционными формами обучения. Одним из таких случаев является использование компьютерных моделей в учебном процессе. Следует отметить, что под компьютерными понимают компьютерные программы, которые позволяют имитировать физические явления, эксперименты или идеализированные ситуации, встречающиеся в задачах.
В чем же преимущество компьютерного моделирования по сравнению с натурным экспериментом? Прежде всего, компьютерное моделирование позволяет получать наглядные динамические иллюстрации физических экспериментов и явлений, воспроизводить их тонкие детали, которые часто ускользают при наблюдении реальных явлений и экспериментов. При использовании моделей компьютер предоставляет уникальную, не достижимую в реальном физическом эксперименте, возможность визуализации не реального явления природы, а его упрощённой модели. При этом можно поэтапно включать в рассмотрение дополнительные факторы, которые постепенно усложняют модель и приближают ее к реальному физическому явлению. Кроме того, компьютерное моделирование позволяет варьировать временной масштаб событий, а также моделировать ситуации, не реализуемые в физических экспериментах.
Работа учащихся с компьютерными моделями чрезвычайно полезна, так как компьютерные модели позволяют в широких пределах изменять начальные условия физических экспериментов, что позволяет им выполнять многочисленные виртуальные опыты. Такая интерактивность открывает перед учащимися огромные познавательные возможности, делая их не только наблюдателями, но и активными участниками проводимых экспериментов. Некоторые модели позволяют одновременно с ходом экспериментов наблюдать построение соответствующих графических зависимостей, что повышает их наглядность. Подобные модели представляют особую ценность, так как учащиеся обычно испытывают значительные трудности при построении и чтении графиков.
Разумеется, компьютерная лаборатория не может заменить настоящую физическую лабораторию. Тем не менее, выполнение компьютерных лабораторных работ требует определенных навыков, характерных и для реального эксперимента - выбор начальных условий, установка параметров опыта и т. д.
Компьютерные модели, разработанные компанией "Физикон", легко вписываются в урок и позволяют учителю организовать новые, нетрадиционные виды учебной деятельности учащихся.
1.Урок решения задач с последующей компьютерной проверкой.
Учитель предлагает учащимся для самостоятельного решения в классе или в качестве домашнего задания индивидуальные задачи, правильность решения которых они могут проверить, поставив компьютерные эксперименты. Самостоятельная проверка полученных результатов, при помощи компьютерного эксперимента, усиливает познавательный интерес учащихся, а также делает их работу творческой, а зачастую приближает её по характеру к научному исследованию. В результате многие учащиеся начинают придумывать свои задачи, решать их, а затем проверять правильность своих рассуждений, используя компьютерные модели. Учитель может сознательно побуждать учащихся к подобной деятельности, не опасаясь, что ему придётся решать ворох придуманных учащимися задач, на что обычно не хватает времени. Более того, составленные школьниками задачи можно использовать в классной работе или предложить остальным учащимся для самостоятельной проработки в виде домашнего задания.
2.Урок - исследование.
Учащимся предлагается самостоятельно провести небольшое исследование, используя компьютерную модель, и получить необходимые результаты. Тем более, что многие модели позволяют провести такое исследование буквально за считанные минуты. Конечно, учитель помогает учащимся на этапах планирования и проведения экспериментов.
3.Урок - компьютерная лабораторная работа.
Для проведения такого урока необходимо разработать соответствующие раздаточные материалы. Задания в бланках лабораторных работ следует расположить по мере возрастания их сложности. Вначале имеет смысл предложить простые задания ознакомительного характера и экспериментальные задачи, затем расчетные задачи и, наконец, задания творческого и исследовательского характера. При ответе на вопрос или при решении задачи учащийся может поставить необходимый компьютерный эксперимент и проверить свои соображения. Расчётные задачи рекомендуется вначале решить традиционным способом на бумаге, а затем поставить компьютерный эксперимент для проверки правильности полученного ответа.
Хочется отметить, что задания творческого и исследовательского характера существенно повышают заинтересованность учащихся в изучении физики и являются дополнительным мотивирующим фактором. По этой причине уроки последних двух типов приближаются к идеалу, так как ученики получают знания в процессе самостоятельной творческой работы, ибо знания необходимы им для получения конкретного, видимого на экране компьютера, результата. Учитель в этих случаях является лишь помощником в творческом процессе овладения знаниями.
Мы кратко рассмотрели физические принципы работы двух устройств, сыгравших ключевую роль в истории электроники XX века, — электровакуумного триода и транзистора. Почему ЭВМ обязаны своим появлением именно этим устройствам? Потому что на их основе были созданы электрические схемы, выполняющие операции булевой алгебры. Сама по себе булева алгебра предельно проста, т. к. оперирует только двумя числами — 0 и 1. Но оказывается, чтобы реализовать быстрые, простые и надежные устройства, выполняющие логические операции, нужны достаточно сложные электронные элементы. Таким образом, создание ЭВМ было бы невозможно без вклада физиков, придумавших «электронные вентили» — триод и транзистор.
С физикой, несомненно, связано и будущее компьютерной техники. Наиболее перспективными направлениями ее развития на данный момент считаются создание квантовых компьютеров и нейрокомпьютеров (рис. 5). Квантовые компьютеры будут использовать в качестве базовых элементов отдельные молекулы, поэтому, очевидно, их развитие невозможно без применения аппарата квантовой физики. А нейрокомпьютеры — это устройства обработки информации, в работе которых будут использоваться принципы функционирования центральной нервной системы и мозга. Такое заимствование возможно только после детального изучения этих систем, в том числе с физической точки зрения.
На примере истории вычислительной техники мы можем понять, как тесно развитие высоких технологий связано с развитием фундаментальных наук, насколько сильно первое зависит от второго. Поэтому, чтобы добиться успеха в сфере новых технологий, надо помнить о том, что служит их основой, и в первую очередь — о теоретической физике. Только успехи фундаментальной науки могут привести к открытию новых горизонтов в прикладных работах, к новым удивительным достижениям цивилизации.
Быстрое развитие компьютерной техники и расширение её функциональных возможностей позволяет широко использовать компьютеры на всех этапах учебного процесса. Большие возможности содержатся в использовании компьютеров при обучении физики. Эффективность применения компьютеров в учебном процессе зависит от многих факторов, это и от "железа", и от качества используемых обучающих программ, и от методики обучения, применяемой учителем. Физика - наука экспериментальная, её всегда преподают, сопровождая демонстрационным экспериментом. Методика обучения физике всегда была сложнее методик преподавания других предметов. Использование компьютеров в обучении физики деформирует методику её преподавания как в сторону повышения эффективности обучения, так и в сторону облегчения работы учителя.
Для повышения наглядности обучения можно использовать компьютерную программу "Физика в картинках" НЦ "Физикон"
Изложение нового материала, можно проводить с использованием одного компьютера, находящегося рядом с демонстрационным столом. Все физические эксперименты можно сопровождать использованием компьютерной программы " Физика в картинках ", в которой содержатся и проводятся демонстрации опытов с одновременно строящимися графиками, прилагаются пояснения происходящих процессов и явлений. Этот подход в компьютерной программе применяется ко всем основным темам школьного курса физики, что позволяет быстрее и качественнее объяснить учебный материал, повышает наглядность и доступность обучения, даёт возможность демонстрировать неоднократно явления и процессы как в дискретном, так и анимационном режимах. Просматривать изучаемые явления одновременно со строящимися графиками, менять в программе компьютера параметры факторов, создающих явления. Позволяет разносторонне демонстрировать ход опытов, а учащимся глубже осваивать учебный материал. Использование этой программы эффективно на этапах закрепления и повторения учебного материала как в индивидуальном, так и групповом обучении.
В плане закрепления изученного материала и при самостоятельной работе учащихся можно использовать программу "Уроки физики Кирилл и Мефодий" для 9 и 10 кл - электронные учебники от компании "Кирилл и Мефодий". Данная программа разбита на уроки в соответствии с основными темами курса физики. Имеет чёткое звуковое сопровождение. Хороший подбор контролирующих тестов. Заранее устанавливается нужная тема и после объяснения нового материала запускаются нужные озвученные пункты учебного материала. Это позволяет быстро и кратко ещё раз прокрутить изучаемую тему в сознании учащихся. Иногда для повторения применяют создание кроссвордов на пройденные темы по физике. Выполняют их в программе Microsoft Excel. Организационно проводят это в компьютерном кабинете, где учащиеся рассаживаются по 3-5 человек за компьютер. В группы учащиеся комплектуются самостоятельно. Процесс создания кроссвордов в группе учащихся проходит более интенсивно, более азартно и более интереснее, чем когда за компьютером сидит один учащийся. После создания кроссворда учащиеся обмениваются ими, предварительно записав их на дискеты, (желательно чтобы каждый учащийся наряду с тетрадью имел свою собственную дискету), а затем разгадывают кроссворды, при этом возникает в некотором роде соревновательный эффект: кто сложнее создаст кроссворд, а кто быстрее его разгадает.
Кроме того, можно использовать компьютеры для рисования общего вида графика какого- либо закона или явления с помощью приложения Paint, а более точное построение графиков проводят в программе Microsoft Excel, при этом графики получаются очень красивыми, что вызывает чувство удовлетворения работой. Построение графиков в программе Microsoft Excel позволяет пронаблюдать процесс изменения графика при изменении любых параметров протекающего процесса.
Контроль знаний, точнее, обратную связь устанавливают на основе самоконтроля и самооценки знаний учащихся: перед началом занятия получают информацию от каждого учащегося о степени выполнения им домашнего задания, в виде самооценки за каждую часть домашнего задания, а затем на занятии они подтверждают свои оценки, либо традиционным способом в кабинете физике, либо тестированием с использованием компьютеров, на основе собственных тестов, либо с помощью тестов программы "Уроки физики Кирилла и Мефодия". Также неплохо вписывается в структуру контроля знаний использование компьютерной программы "Репетитор по физике Кирилла и Мефодия". Во время тестирования учащиеся рассаживаются по одному человеку за компьютер. Остальные в это время заняты либо традиционным контролем, либо решением задач по данной теме.
Использование компьютера при решении физических задач.
Задачи решаются в компьютерном классе с помощью электронного задачника программы "Физика в картинках". НЦ " Физикон ".
Нужно сказать, что решение физических задач с помощью компьютера мало что даёт учебному процессу, так как в этом случае в основном используется компьютер как калькулятор и не более. Но, тем не менее, использование компьютера при решении физических задач может давать большой образовательный эффект при условии, если к седьмому классу учащиеся будут владеть программой Microsoft Excel, тогда на полную мощность можно использовать при решении задач функции, графики и мн. др. Кроме того, необходимо создать специальную подборку задач и методику их решения.
Методика использования компьютерных моделей на уроках.
Прежде всего, чрезвычайно удобно использовать компьютерные модели в демонстрационном варианте при объяснении нового материала или при решении задач.
Конечно, такие демонстрации будут иметь успех, если учитель работает с небольшой группой учащихся, которых можно рассадить вблизи монитора компьютера или, если в кабинете имеется проекционная техника, позволяющая отобразить экран компьютера на стенной экран большого размера. В противном случае учитель может предложить учащимся самостоятельно поработать с моделями в компьютерном классе или в домашних условиях, что иногда бывает более реально.
Следует отметить, что при индивидуальной работе учащиеся с большим интересом повозятся с предложенными моделями, пробуют все регулировки, как правило, не особенно вникая в физическое содержание происходящего на экране. Как показывает практический опыт, обычному школьнику конкретная модель может быть интересна в течении 3 -5 минут, а затем неизбежно возникает вопрос: «А что делать дальше?»
Что же нужно сделать, чтобы урок в компьютерном классе был не только интересен по форме, но и дал максимальный учебный эффект?
Учителю необходимо заранее подготовить план работы с выбранной для изучения компьютерной моделью, сформулировать вопросы и задачи, согласованные с функциональными возможностями модели, также желательно предупредить учащихся, что им в конце урока будет необходимо ответить на вопросы или написать небольшой отчёт о проделанной работе. Идеальным является вариант, при котором учитель в начале урока раздаёт учащимся индивидуальные задания в распечатанном виде.
Какие же виды заданий и учебной деятельности можно предложить учащимся при работе с компьютерными моделями и как организовать эту деятельность?
Виды заданий к компьютерным моделям
Это задание предназначено для того, чтобы помочь учащемуся понять назначение модели и освоить её регулировки. Задание содержит инструкции по управлению моделью и контрольные вопросы.
После того как компьютерная модель освоена, имеет смысл предложить учащимся 1 - 2 эксперимента. Такие эксперименты позволяют учащимся глубже вникнуть в смысл происходящего на экране.
Далее можно предложить учащимся экспериментальные задачи, то есть задачи, для решения которых необходимо продумать и поставить соответствующий компьютерный эксперимент. Как правило, учащиеся с особым энтузиазмом берутся за решение таких задач. Несмотря на кажущуюся простоту, такие задачи очень полезны, так как позволяют учащимся увидеть живую связь компьютерного эксперимента и физики изучаемых явлений.
4.Расчётные задачи с последующей компьютерной проверкой
На данном этапе учащимся уже можно предложить 2 - 3 задачи, которые вначале необходимо решить без использования компьютера, а затем проверить полученный ответ, поставив компьютерный эксперимент. При составлении таких задач необходимо учитывать как функциональные возможности модели, так и диапазоны изменения числовых параметров. Следует отметить, что, если эти задачи решаются в компьютерном классе, то время, отведённое на решение любой из этих задач, не должно превышать 5 -8 минут. В противном случае, использование компьютера становится мало эффективным. Задачи, требующие более длительного времени для решения, имеет смысл предложить учащимся для предварительной проработки в виде домашнего задания и/или обсудить эти задачи на обычном уроке в кабинете физики, и только после этого использовать их в компьютерном классе.
В рамках этого задания учащимся предлагается решить задачи, в которых необходимо определить величины двух зависимых параметров, например, в случае бросания тела под углом к гори-зонту, начальную скорость и угол броска, для того чтобы тело пролетело заданное расстояние. При решении такой задачи учащийся должен вначале самостоятельно выбрать величину одного из параметров с учётом диапазона, заданного авторами модели, а затем решить задачу, чтобы найти величину второго параметра, и только после этого поставить компьютерный эксперимент для проверки полученного ответа. Понятно, что такие задачи имеют множество решений.
6.Задачи с недостающими данными
При решении таких задач учащийся вначале должен разобраться, какого именно параметра не хватает для решения задачи, самостоятельно выбрать его величину, а далее действовать, как и в предыдущем задании.
В рамках данного задания учащемуся предлагается составить одну или несколько задач, самостоятельно решить их (в классе или дома), а затем, используя компьютерную модель, проверить правильность полученных результатов. На первых порах это могут быть задачи, составленные по типу решённых на уроке, а затем и нового типа, если модель это позволяет.
Наиболее способным учащимся можно предложить исследовательское задание, то есть задание, в ходе выполнения которого им необходимо спланировать и провести ряд компьютерных экспериментов, которые бы позволили подтвердить или опровергнуть определённые закономерности. Самым сильным ученикам можно предложить самостоятельно сформулировать такие закономерности. Заметим, что в особо сложных случаях, учащимся можно помочь в составлении плана необходимых экспериментов или предложить план, заранее составленный учителем.
С помощью ряда моделей можно продемонстрировать, так называемые, проблемные ситуации, то есть ситуации, которые приводят учащихся к кажущемуся или реальному противоречию, а затем предложить им разобраться в причинах таких ситуаций с использованием компьютерной модели.
Некоторые модели вполне можно использовать и при решении качественных задач. Такие задачи или вопросы, конечно, лучше сформулировать, поработав с моделью, заранее.
При регулярной работе с компьютерным курсом из придуманных заданий имеет смысл составить компьютерные лабораторные работы, в которых вопросы и задачи расположены по мере увеличения их сложности. Это занятие достаточно трудоёмкое, но именно такие работы дают наибольший учебный эффект.
В последнее время можно часто слышать вопросы: "А нужен ли компьютер на уроках физики? Не вытеснят ли компьютерные имитации реальный эксперимент из учебного процесса?" Чаще всего такие вопросы задают учителя, не владеющие информационными технологиями и не очень понимающие, чем могут быть полезны эти технологии в преподавании.
Давайте попробуем ответить на вопрос: "Когда же оправдано использование компьютерных программ на уроках физики?" Мы считаем, что, прежде всего, в тех случаях, в которых возникает существенное преимущество по сравнению с традиционными формами обучения. Одним из таких случаев является использование компьютерных моделей в учебном процессе. Следует отметить, что под компьютерными понимают компьютерные программы, которые позволяют имитировать физические явления, эксперименты или идеализированные ситуации, встречающиеся в задачах.
В чем же преимущество компьютерного моделирования по сравнению с натурным экспериментом? Прежде всего, компьютерное моделирование позволяет получать наглядные динамические иллюстрации физических экспериментов и явлений, воспроизводить их тонкие детали, которые часто ускользают при наблюдении реальных явлений и экспериментов. При использовании моделей компьютер предоставляет уникальную, не достижимую в реальном физическом эксперименте, возможность визуализации не реального явления природы, а его упрощённой модели. При этом можно поэтапно включать в рассмотрение дополнительные факторы, которые постепенно усложняют модель и приближают ее к реальному физическому явлению. Кроме того, компьютерное моделирование позволяет варьировать временной масштаб событий, а также моделировать ситуации, не реализуемые в физических экспериментах.
Работа учащихся с компьютерными моделями чрезвычайно полезна, так как компьютерные модели позволяют в широких пределах изменять начальные условия физических экспериментов, что позволяет им выполнять многочисленные виртуальные опыты. Такая интерактивность открывает перед учащимися огромные познавательные возможности, делая их не только наблюдателями, но и активными участниками проводимых экспериментов. Некоторые модели позволяют одновременно с ходом экспериментов наблюдать построение соответствующих графических зависимостей, что повышает их наглядность. Подобные модели представляют особую ценность, так как учащиеся обычно испытывают значительные трудности при построении и чтении графиков.
Разумеется, компьютерная лаборатория не может заменить настоящую физическую лабораторию. Тем не менее, выполнение компьютерных лабораторных работ требует определенных навыков, характерных и для реального эксперимента - выбор начальных условий, установка параметров опыта и т. д.
Компьютерные модели, разработанные компанией "Физикон", легко вписываются в урок и позволяют учителю организовать новые, нетрадиционные виды учебной деятельности учащихся.
1.Урок решения задач с последующей компьютерной проверкой .
Учитель предлагает учащимся для самостоятельного решения в классе или в качестве домашнего задания индивидуальные задачи, правильность решения которых они могут проверить, поставив компьютерные эксперименты. Самостоятельная проверка полученных результатов, при помощи компьютерного эксперимента, усиливает познавательный интерес учащихся, а также делает их работу творческой, а зачастую приближает её по характеру к научному исследованию. В результате многие учащиеся начинают придумывать свои задачи, решать их, а затем проверять правильность своих рассуждений, используя компьютерные модели. Учитель может сознательно побуждать учащихся к подобной деятельности, не опасаясь, что ему придётся решать ворох придуманных учащимися задач, на что обычно не хватает времени. Более того, составленные школьниками задачи можно использовать в классной работе или предложить остальным учащимся для самостоятельной проработки в виде домашнего задания.
2.Урок - исследование .
Учащимся предлагается самостоятельно провести небольшое исследование, используя компьютерную модель, и получить необходимые результаты. Тем более, что многие модели позволяют провести такое исследование буквально за считанные минуты. Конечно, учитель помогает учащимся на этапах планирования и проведения экспериментов.
3.Урок - компьютерная лабораторная работа.
Для проведения такого урока необходимо разработать соответствующие раздаточные материалы. Задания в бланках лабораторных работ следует расположить по мере возрастания их сложности. Вначале имеет смысл предложить простые задания ознакомительного характера и экспериментальные задачи, затем расчетные задачи и, наконец, задания творческого и исследовательского характера. При ответе на вопрос или при решении задачи учащийся может поставить необходимый компьютерный эксперимент и проверить свои соображения. Расчётные задачи рекомендуется вначале решить традиционным способом на бумаге, а затем поставить компьютерный эксперимент для проверки правильности полученного ответа.
Хочется отметить, что задания творческого и исследовательского характера существенно повышают заинтересованность учащихся в изучении физики и являются дополнительным мотивирующим фактором. По этой причине уроки последних двух типов приближаются к идеалу, так как ученики получают знания в процессе самостоятельной творческой работы, ибо знания необходимы им для получения конкретного, видимого на экране компьютера, результата. Учитель в этих случаях является лишь помощником в творческом процессе овладения знаниями.
По сути, вся история ЭВМ определяется серией замечательных физических открытий в области электроники. Строго говоря, вычислительные машины существовали и до XX века: это абак, счеты, логарифмические линейки, арифмометры, счетные машины Паскаля и Бэббиджа и некоторые другие. Всё это — механические устройства с очень ограниченными возможностями. История же собственно электронных вычислительных машин (рис. 1) начинается в двадцатом веке и связана с изобретением в 1906 году американским инженером Ли де Форестом вакуумного триода. На основе триодов были созданы ЭВМ так называемого первого поколения, начинающего свою историю в 40-е годы. Это поколение компьютеров-монстров, занимавших по своим размерам целые комнаты и потреблявших мощности, достаточные для работы небольшого завода. Однако, несмотря на такую громоздкость, производительность этих машин была весьма скромной.
Качественное изменение ЭВМ произошло после еще одного эпохального открытия физики — изобретения в 1947 году Джоном Бардином, Уолтером Браттейном и Уильямом Шокли полевого транзистора. Применение полупроводниковых транзисторов вместо вакуумных ламп (триодов) позволило существенно уменьшить размеры и энергопотребление машин второго поколения и повысить их быстродействие и надежность.
Дальнейшее развитие компьютеров связано с использованием интегральных схем, впервые изготовленных в 1960 году американцем Робертом Нойсом. Интегральная схема — это множество, от десятков до миллионов, транзисторов, размещенных на одном кристалле полупроводника. Использование интегральных схем (компьютеры третьего поколения), больших и сверхбольших интегральных схем (четвертое поколение) привело к значительному упрощению процесса изготовления ЭВМ и увеличению их быстродействия. В 80-е годы началось изготовление персональных компьютеров, которые постепенно приобрели современный вид. Примерно тогда же появились первые мобильные компьютеры, или ноутбуки. Огромной производительности достигли многопроцессорные вычислительные комплексы — так называемые суперкомпьютеры.
Почему же именно изобретение триода и транзистора определило весь путь развития компьютеров? Для ответа на этот вопрос нужно вспомнить об основных принципах работы компьютера.
Сердце современного компьютера — это его центральный процессор, поэтому остановимся на нем. Основная функция процессора — обработка информации, т. е. выполнение различных операций над данными. А так как данные в современных ЭВМ представляются в двоичном виде, то и операции с ними производятся на основе двоичной логики, или так называемой булевой алгебры.
Читайте также: